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C 
ritical infrastructures must continuously operate 
safely and reliably, despite a variety of potential 
system disturbances. Given their strict operat-
ing requirements, such systems are automated 
and controlled in real time by several digital con-

trollers receiving measurements from sensors and trans-
mitting control signals to actuators. Since these physical 
systems are often spatially distributed, there is a need for 
information technology (IT) infrastructures enabling the 
timely data flow between the system components. These 
networked control systems are ubiquitous in modern soci-
eties [1]. Examples include the electric power network, in-
telligent transport systems, and industrial processes.

Networked control systems are vulnerable to cyber-
threats through the use of open communication networks 
and heterogeneous IT components. Because networked 
control systems are often operated through supervisory 
control and data acquisition (SCADA) systems and the 
measurement and control data in these systems are com-
monly transmitted through unprotected communication 
channels, the networked control system is vulnerable to 
several threats [2]. As illustrative examples, we mention the 
cyberattacks on power transmission networks operated by 
SCADA systems [3] and the Stuxnet malware that allegedly 

infected an industrial control system and disrupted its 
operation [4], [5].

Unlike other IT systems where cybersecurity mainly 
involves the protection of data, cyberattacks on networked 
control systems may influence physical processes through 
feedback actuation. Therefore, networked control-system 
security needs to consider threats at both the cyber and 
physical layers.

Control theory has developed frameworks to handle 
disturbances and faults [6], [7], and these tools can be used 
to detect and attenuate the consequences of cyberattacks on 
networked control systems. However, there are substantial 
conceptual and technical differences between a fault-toler-
ant and a secure control framework. Faults are commonly 
considered to be physical events that affect the system 
behavior. Simultaneous events are assumed to be noncol-
luding, in the sense that events do not act in a coordinated 
way. On the other hand, cyberattacks may be performed 
over a significant number of attack points in a coordinated 
fashion; see, for instance, [8]–[10]. Moreover, faults are con-
strained by the physical dynamics and do not have an 
intent or objective to fulfill, as opposed to cyberattacks that 
do have a malicious intent and are not directly constrained 
by the dynamics of the physical process. Ensuring security 
may involve addressing a large number of threats, thus 
requiring the use of risk management methods [11] to pri-
oritize the threats to be mitigated.
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The need for novel methods to enhance the cybersecurity 
of networked control systems has motivated several research 
directions recently. The general problem of networked con-
trol systems under cyberattack is discussed and formalized 
in [12] and [13]. Various attack scenarios are evaluated on real 
and simulated benchmark systems in [13] and [14], respec-
tively. For electric power networks, false-data injection 
attacks have been analyzed in detail in terms of vulnerabil-
ity quantification [15], attack impact [16], [17], detection 
schemes [18], and attack evaluation on a realistic test bed [8]. 
Specific classes of attacks have been analyzed for dynamic 
control systems, such as replay attacks [19], stealthy false-
data injection attacks [9], [10], [13], and denial-of-service 
attacks [20]. Quantification of tolerable errors in sensor and 
actuator data and their mitigation is discussed in [21], while 
[22]–[24] studied the network-wide data dissemination under 
malicious links, and [25] proposed a game-theoretic 
approach to cross-layer security under cascading failures.

This article presents some of the recent approaches to 
address cybersecurity of networked control systems under 
the unified perspective of risk management. First the architec-
ture and modeling assumptions of the networked control 
system and adversary are introduced, following the work in 
[13]. Specifically, we describe the models and assumptions 
used for the plant, communication network, controller, and 
anomaly detector. Moreover, important concepts regarding 
the system’s operation are defined, such as the system’s nomi-
nal behavior and safe sets. The adversary’s model, goals, and 
constraints are also discussed. After describing three funda-
mental security properties of IT systems, the adversary model 
is defined in terms of available resources to violate the afore-
mentioned properties, knowledge of the system’s model, and 
a given attack policy. The attack policy is designed according 
to the adversary’s aims: to produce the maximum impact on 
the physical plant while remaining stealthy.

To tackle the existing threats, a defense methodology 
based on the risk management framework is presented. The 
notion of risk is defined in terms of a threat’s scenario, 
impact, and likelihood, and the risk management frame-
work is described. In this article, emphasis is given to the 
assessment and treatment of risk. In particular, recent quan-
titative tools developed in [26] and [27] for analyzing the 
risk of threats of static and dynamic systems are presented. 
The risk assessment method from [26] is tailored to quantify 
the likelihood of threats on a static electric power system, 
while the approach in [27] addresses dynamic systems and 
analyzes both the likelihood and impact of threats. The pro-
posed risk assessment methods attempt to quantify the risk 
of different hypothetical attack scenarios for the present 
configuration and model of the system. As such, these 
methods are not executed based on real-time data of the 
system. The outcome from the risk assessment methods 
may be used for risk treatment, which is also discussed in 
this article and related to previous work for static and 
dynamic systems, [18], [28], [29] and [19], [30], respectively. 

The outline of this article is as follows. First, the models for 
the networked control system and adversary are discussed in 
“Networked Control Systems Under Attacks,” together with 
the risk management framework. The article proceeds by pre-
senting the risk analysis methods in “Risk Analysis for 
Stealthy Deception Attacks.” First, the method for static sys-
tems is described in detail and illustrated for large-scale elec-
tric power systems. Risk treatment methodologies for electric 
power systems are also discussed. Next, the risk assessment 
method for the dynamic case considering impact and likeli-
hood is briefly presented and illustrated on a wireless qua-
druple-tank test bed. Possible risk treatment approaches are 
also discussed and illustrated. A summary of the article and 
concluding remarks are presented in the last section.

Networked Control System under Attacks
Networked control systems are spatially distributed systems 
where the physical plant is operated by digital controllers 
that receive measurements from spatially distributed sen-
sors and transmit control signals to spatially distributed 
actuators through a communication network; see [1] and ref-
erences therein. A typical networked control system struc-
ture has the four main components given in Figure 1: the 
physical plant, communication network, digital feedback 
controller, and digital anomaly detector. A model of each 
component is described below. Since this article concerns 
mainly threats arising from the cyber side of the networked 
control system, only discrete-time models are discussed in 
this article, where k N!  is the integer time index. Relevant 
work on the security of networked control system using con-
tinuous-time models may be found in [9] and [10].

The plant operation is supported by a communication 
network through which the sensor measurements and 
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Figure 1   A schematic of a networked control system under attack. 
The plant exchanges data with the feedback controller and anomaly 
detector through a communication network, where uku  ( )uk  and yk  
( )yku  are the control and measurement signals on the plant (control-
ler) side. An adversary may inject false data ukD  and ykD  through 
the communication network. An alarm is triggered by the anomaly 
detector when the norm of the residue signal r  over the time interval 
[ , ]k kf0  exceeds a given threshold .d
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actuator data are transmitted. On the plant side, the mea-
surement data correspond to ,y Rk

ny!  while u Rk
nu!u  rep-

resents the actuator data. On the controller side, the sensor 
and actuator data are denoted by y Rk

ny!u  and ,u Rk
nu!

respectively. The dynamical model of the plant is given by
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where x Rk
nx!  denotes the plant’s state, and the unknown 

input d Rk
nd!  models possible disturbances or faults affect-

ing the system. Mismatches between the transmitted signals, 
yk  and ,uk  and the received ones, yku  and ,uku  may be due to the 
communication network, as in the case of delays or packet 
drops. Since the focus of this article is on the security of the 
control system with respect to malicious adversaries, the com-
munication network is assumed to be ideal and process and 
measurement noises are neglected. Under this assumption, 
the mismatches between the transmitted signals and the 
received ones are caused by the adversary’s actions. Similarly, 
physical attacks performed by malicious adversaries are mod-
eled by the unknown input .dk  The nominal behavior of the 
system under no attack is defined as follows.

Definition 1
A networked control system is said to have nominal behavior 
if ,u uk k=u  ,y yk k=u  and .d 0k =  Otherwise, the system has 
abnormal behavior.

Several physical systems have tight operating constraints 
that, if not satisfied, might result in physical damage to the 
system, for example, power systems, where electrical power 
flows along transmission lines cannot exceed physical limits. 
In this work, the concept of safe sets is used to characterize 
the safety constraints. Consider the time interval [ , ]N0  and 
define the vector [ ] .x x x R ( )

N
n N

0
1xf_ !< < < +  Given the set 

,RS ( )
x

n N 1x3 +  safety is defined as follows.

Definition 2
The system is said to be safe over the time interval [ , ]N0  if 
the state trajectory x  is contained in the safe set .Sx

Returning to the power system example, let xk  be the 
state of the power system and denote the output y C xk x k=  as 
the instantaneous power flow measured on a given trans-
mission line. Due to physical limits, the cable cannot sustain 
an arbitrarily large instantaneous power. With the appropri-
ate scaling of ,yk  such an operating constraint can be defined 
in terms of the safe set { :x maxSx k= { } } .C x 1x k #3

To comply with performance requirements in the presence 
of unknown disturbances, the physical plant is assumed to be 
controlled by an appropriate feedback controller [6], which 
computes the control signal uk  given the measurement signal 
yku  received through the communication network. The output 
feedback controller can be written in a state-space form as
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where the states of the controller are labeled as .z Rk
nz!

Given the plant model, the controller is supposed to be 
designed so that acceptable performance is achieved under 
nominal behavior.

The anomaly detector, which is collocated with the con-
troller, monitors the system to detect possible deviations 
from the nominal behavior. It has access to only yku  and .uk  
Several approaches to detecting malfunctions in control 
systems are available in the fault diagnosis literature [7], 
[31]. Other schemes tailored to detecting sparse adversarial 
attacks have also been proposed [32], [33]. A common 
approach is the observer-based fault detection filter
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where s Rk
ns!  is the anomaly detector’s state. Based on the 

plant and controller models, the control signal ,uk  and the 
received measurements ,yku  the fault detection filter com-
putes the residue .r Rk

nr!  The residue signal is evaluated to 
detect and locate existing anomalies, as depicted in Figure 1.

The anomaly detector (3) is designed such that
1)	 under nominal behavior of the system ,u uk k= u^

,y yk k= u h the expected value of rk  converges asymp-
totically to a neighborhood of the origin

2)	 the residue is sensitive to the anomalies so that an 
abnormal behavior of the system results in a nonzero 
residue signal.

The aim of an anomaly detector is to evaluate the residue 
to detect anomalies with high probability while keeping 
the rate of false alarms due to uncertainties below a certain 
level. Given the aforementioned design specifications of 
the anomaly detector, various residue evaluation tech-
niques described in [34] may be used to detect anomalies. 
For instance, the anomaly detector may be designed to trig-
ger an alarm when a given norm of the residue signal 
exceeds a certain bound over the time interval [ , ]k k f0
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where [ ]r r rk k f0f= < < <  is the residue signal over the time 
interval [ , ],k k f0  r p  denotes the p, -norm of r,  and 0>d
ensures a desired false-alarm rate with respect to uncer-
tainties. Different methods to compute the threshold d  and 
the corresponding false-alarm rate may be found in [31].

Adversary Model
Due to the tight coupling between the cyber and physical 
domains, the control system behavior depends on the state 
and properties of the IT infrastructure. To model and 
understand how a cyber adversary may affect the net-
worked control system operation requires knowing how IT 
systems are vulnerable to adversaries. Computer security 
literature identifies three fundamental properties of infor-
mation and services in IT systems, namely confidentiality, 
integrity, and availability, often denoted as CIA [35]. They 



FEBRUARY 2015 «  IEEE CONTROL SYSTEMS MAGAZINE  27

can be violated by disclosure, deception, and denial-of-ser-
vice attacks, respectively. For examples of attacks violating 
these properties in networked control systems, see “The 
CIA in Networked Control Systems.”

Disclosure attacks enable the adversary to gather 
sequences of data Ik  from the calculated control actions uk  
and the real measurements .yk  As such, the physical 
dynamics of the system are not affected by this type of 
attack. Instead, these attacks gather intelligence that may 
enable more complex attacks, such as replay attacks [36]. 
On the other hand, deception attacks modify the control 
actions uk  and sensor measurements yk  from their calcu-
lated or real values to the corrupted signals uku  and ,yku  
respectively. The deception attacks are modeled as

,
,

u u u

y y y
k k k

k k k

_

_

D

D

+

+

u
u

where the vectors ukD  and ykD  represent the data corruption 
to the respective data channels, as depicted in Figure 1. The 
data corruption vectors may have sparsity patterns according 
to the adversary’s resources, namely the communication 
channels that can be corrupted. Similarly, denial-of-service 
attacks may also affect the transmitted data by preventing it 
from reaching the desired destination. Attacks that may 
affect the system behavior directly and through feedback are 
classified as disruption attacks [13]. From the preceding dis-
cussion, we conclude that physical, deception, and denial-of-
service attacks are classified as disruption attacks. The data 
channels and physical actuators required to perform specific 
disclosure and disruption attacks are denoted as disclosure 
and disruption resources, respectively.

In addition to the disclosure and disruption resources 
required to stage a given attack, the adversary’s resources 
can also include knowledge of the system model. Different 
attack scenarios can be qualitatively categorized in terms of 
the required resources in the attack space, as illustrated in 
Figure 2. A given point in the attack space represents an 
instance of the adversary model in Figure 3 where each of 
the adversary resources is mapped to a specific axis of the 
attack space. The attack policy mapping the model knowl-
edge K  and disclosed data gathered until time , ,k Ik  to the 
attack vector a Rk

na!  is denoted as ( , ) .a g K Ik k=

For each attack scenario, the attack policy is designed 
according to the adversary’s intent, namely the attack goals and 
constraints. In particular, the attack scenarios in this article con-
sider adversaries whose goal is to drive the state trajectory x of 
the physical system to an unsafe set while remaining stealthy, 
as illustrated in Figure 4. Therefore the attack goals are stated in 
terms of the attack impact on the system operation, while the 
constraints are related to the attack detectability.

The physical impact of an attack can be evaluated by assess-
ing whether or not the state of the system remained in the safe 
set during and after the attack. The attack is considered success-
ful if the state is driven out of the safe set. Attack constraints 
imply that attacks are constrained to remain stealthy. Denoting 

[ ]a a ak k f0g= < < <  as the attack signal in the time interval [ , ],k k f0  
and recalling that the residue signal is a function of the attack 
signal, a stealthy attack is defined as follows.

Definition 3
The attack signal a  is stealthy over the time interval [ , ]k k f0  
if the magnitude of the residue signal is smaller than the 
detection threshold, so that no alarm is triggered.

Below, it is assumed that the disruptive attack compo-
nent consists of only data deception attacks and thus at 
time k  the attack vector [ ] .a u yk k kD D= < < <

Defense Methodology
This subsection describes a common methodology to 
enhance a system’s cybersecurity, namely the risk manage-
ment framework [35], [37], [38]. The main objective of risk 
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Figure 2  The cyberphysical attack space. Each axis of the attack 
space corresponds to a class of adversary resources. Several 
attack scenarios analyzed in related work are depicted and qualita-
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Figure 3  A diagram of the adversary model. The a priori model 
knowledge possessed by the adversary is denoted as ,K  while Ik  
corresponds to the set of sensor and actuator data available to the 
adversary, obtained through the disclosure resources, and 

[ ]a u yk k kD D= < < <  is the attack vector that may affect the system 
behavior using the disruption resources. The attack policy g $^ h 
maps the model knowledge and disclosed data to the attack vector.
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management is to assess and minimize the risk of threats, 
where the notion of risk is defined as follows [39].

Definition 4
Consider a given attack threat scenario, the corresponding 
impact to the system, and the likelihood of such scenario. The 

risk of the system is denoted as the set of triplets 
, , .Risk Scenario Impact Likelihood/ ^ h" ,  

The risk of different threat scenarios may be summarized in 
a two-dimensional risk matrix [38], where each dimension cor-
responds to the likelihood and impact of threats, respectively. 
Additionally, the risk of different threats may be compared 

The CIA in Networked Control Systems

T hree fundamental properties of information and services in 

IT systems are mentioned in the computer security litera-

ture [35] using the acronym CIA: confidentiality, integrity, and 

availability. Confidentiality concerns the concealment of data, 

ensuring it remains known only to the authorized parties. In-

tegrity relates to the trustworthiness of data, meaning there is 

no unauthorized change to the information between the source 

and destination. Availability considers the timely access to in-

formation or system functionalities.

Figure S1 illustrates cyberattacks that violate each security 

property. In all three cases, the plant is sending the measure-

ment vector ,y 2 13k =
<6 @  to the controller through a communi-

cation network. This is a private message, hence only the plant 

and the controller should know the message contents.

In Figure S1(a), the adversary is able to eavesdrop on 

the communication, thus getting access to the contents of 

the message. Therefore the confidentiality attribute was vio-

lated. Another scenario occurs in Figure S1(b), where the ad-

versary succeeds in sending the false measurement vector 

y y yk k kD= +u  to the controller, as if it was the plant sending it. 

Here data integrity is violated. In the final example, illustrated in 

Figure S1(c), the message sent by the plant is actually blocked 

and does not reach the controller. In this instance, data avail-

ability was compromised.

Whereas in IT systems the impact of such cyberattacks re-

mains in the cyber realm, in networked control systems the im-

pact may carry dire consequences for the physical side. Next, 

a specific example illustrating an attack scenario is presented, 

and its consequence to the physical system is discussed.

Consider a remotely controlled power generator, with i  and 

~  denoting its phase-angle and frequency deviation, respec-

tively. Considering the single-machine infinite-bus model [68], 

the generator dynamics are described in continuous time by 

the normalized swing equation

( ) ( ),

( ) ( ) ( ) ( ),

t t

M t D t P t u tf

~ i

~ ~

=

=- - +

o
o

where ( )u t  is the normalized mechanical power provided to 

the generator and M  and D  are the inertia and damping coef-

ficients, respectively. The term ( ) ( ( ))sinP t b tf i=  corresponds 

to the electric power flow from the generator to the bus, where 

b  is the susceptance parameter of the transmission line. Lin-

earizing the model at 0~ i= =  with ,M D b 1= = =  with the 

sampling period ,sT 1s =  and defining the discrete-time state 

[ ] ,xk k ki ~= <  the discrete-time model is
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where ,C Ix =  and uku  is the control signal received on the plant 

side. Additionally, the system is safe if the frequency deviation 

~  is small and the power flow Pf  does not exceed the line rat-

ings. In particular, the system is said to be safe if | | .0 05k #~  

and | | | | .P 0 1f kk #i=  for all .k  Defining the diagonal matrix 

diag( , )T 10 20=  and [ ]x x xN0 f= < < <  as the state trajectory over 

the time interval [ , ],N0  the corresponding safe set is given by

{ : , [ , ]} .x Tx k N1 0Sx k 6# != 3

The anomaly detector corresponds to the state observer
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Figure S1 Cyberattacks on a communication network: (a) data 
confidentiality violation by a disclosure attack, (b) data integrity 
violation by a false-data injection attack, and (c) data availability 
violation by a denial-of-service attack.
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through increasing functions of the threat’s impact and likeli-
hood. As an example, Figure 5 illustrates a medium- and a 
high-risk threat with similar impacts but different likelihoods.

The risk management cycle, depicted in Figure 6, is com-
posed of risk analysis, risk treatment, and risk monitoring. 
Risk analysis identifies threats and assesses the respective 

likelihood and impact on the system. Threats may be iden-
tified based on historical and/or empirical data of cyberat-
tacks and known vulnerabilities in the system [38]. The 
likelihood of a given threat depends on the components 
compromised by the adversary in a given attack scenario 
and their respective vulnerability. Quantitative methods 

where yku  is the measurement received at the anomaly detec-

tor side, zk  is the estimate of ,xk  the residue rk  is the output 

estimation error, and

.
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is the observer gain matrix design such that A LCx x-  is stable. De-

noting [ ] ,r r rN0 f= < < <  an alarm is triggered by the anomaly detector 

when . .r 0 01> d =3  The output feedback controller is given by

( ) ,
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where [ . . ]K 0 0556 0 3306=  is the controller gain matrix ensur-

ing that A B Kx x-  is stable.

Consider an attack scenario where the adversary knows the 

exact model of the plant and is able to compromise the integrity 

of the control signal ,uk  that is, the mechanical power supplied to 

the generator, and the power flow measurement .y Pf k1k k i= =  

Defining ,u u uk k kD= +u  ,y y yk k kD= +u  and the attack vector 

[ ]a u yk k 1kD D= <  the plant under attack is described by
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The adversary attempts to drive the system to an unsafe 

state while remaining stealthy. To that end, the adversary in-

jects an increasing piece-wise constant signal into the control 

input, making the generator produce more power, and thus 

increasing the power flow Pf  along the transmission line. At 

the same time, the power flow increase is hidden from the con-

troller and anomaly detector by tampering with the power flow 

measurement. More specifically, the attack policy is chosen as 

sequential instances of the zero-dynamics policy [13] during N  

time instants, where the attack vector is constructed as
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with C!m  and g 0!  being the invariant zero and the corre-

sponding input-direction satisfying
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In the considered attack scenario, system (S1) has the 

zero 1m =  on the unit circle, input direction [ ] ,g 11e= - <  

and [ ]x 20 0z e= - <  for .0!e  Notice that an input of the form 

a gk
km=  is blocked from the output at steady state by the zero 

,1m =  yielding .lim y 0k k ="3u
For the generator’s closed-loop system with ,x z 00 0= =

choosing N 10=  and .0 01e =  and applying the attack policy 

(S2) results in the signals depicted in Figure S2. Observe that, 

at the end of the first instance, ,r 0N =  . ,0 01Ni =  and .0N~ =  

Therefore, the second attack instance during the time interval 

[ , ]N N1 2+  begins with r 0N =  and also yields .r 0 0071k #3  

for [ , ],k N N1 2! +  as shown in Figure S2. Furthermore, the 

final value of the power flow is increased to . .P 0 02f N2N i= =  

In fact, the attack policy (S2) yields .r 0 0071k #3  for all k  

and .P 0 01f N Ni l= =ll  for , , ,1 2 fl =  as depicted in Figure S2. 

Thus, the adversary is able to drive the system to outside the 

safe set at k 100=  while remaining stealthy.
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Figure S2 Simulation results from the attack policy (S2) with  
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jectory under attack, the injected false-data is shown in (a), and (b) 
illustrates the corresponding residue signal and detection threshold. 
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can be used to identify the minimal set of components that 
need to be compromised for each attack scenario [15], [40], 
while the vulnerability of each compromised components 
is obtained by qualitative means such as expert knowledge 
and historical and empirical data [40]. The potential impact 
of a threat may be assessed by qualitative and quantitative 
methods, for instance by modeling the system and simulat-
ing the attack scenarios [11].

Actions minimizing the risk of threats are determined 
within the risk treatment step. The different actions can be 
classified as prevention, detection, and mitigation. Prevention 
aims at decreasing the likelihood of attacks by reducing the 
vulnerability of the system components, for instance by 
encrypting the communication channels, using firewalls, and 
intelligent routing algorithms [28]. On the other hand, detec-
tion is an approach in which the system is continuously mon-
itored for anomalies caused by adversary actions. Examples of 
detection schemes include antivirus software, network traffic 
analysis [41], and fault detection algorithms [31]. Once an 
anomaly or attack is detected, mitigation actions may be taken 
to disrupt and neutralize the attack, thus reducing its impact. 
The attack may be neutralized by replacing the compromised 
components or using redundant components.

The effectiveness of the defensive actions and the evolution 
of risk over time is evaluated throughout the risk monitoring 
stage. Risk monitoring continuously assesses the known and 
newly discovered vulnerabilities of the system, as well as the 
deployment of the threat mitigation actions.

Given the importance of risk analysis and risk treatment 
in the risk management process, the next sections illustrate 
and describe in detail methods that can be used for risk 
analysis and risk treatment in networked control systems.

Risk Analysis for Stealthy  
Deception Attacks
Quantitative approaches to risk analysis of stealthy decep-
tion attacks are discussed in the remainder of this article. 
First, a simplified static case is analyzed in detail and illus-
trated with a power systems example. Then, the general 
dynamic case is presented and illustrated on a wireless 
quadruple-tank test bed.

Recall that the adversary aims to drive the system to an 
unsafe state while remaining stealthy. Additionally, the 
adversary also has resource constraints, in the sense that 
only a small number of attack points to the system are avail-
able. This section describes a framework for performing 
risk analysis of data deception attacks on networked control 
systems, where an attack is deemed less likely the more 
resources it requires. Particularly, the plant (1), feedback 
controller (2), and anomaly detector (3) are considered to be 
linear time-invariant systems. Defining [ ]x z sk k k kh = < < < <  
and [ ] ,a u yk k kD D= < < <  the closed-loop dynamics of the net-
worked control system driven by deception attacks are [13]
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Risk Analysis for Static Models
The risk assessment in this subsection focuses on analyz-
ing the threat’s likelihood, indicated by the minimum 
number of sensors that need to be compromised by the 
adversary for a given attack scenario. The minimum 
number of compromised sensors is a relevant indicator of 
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Figure 5  A risk matrix plot. The threat’s likelihood and impact cor-
respond to the x axis and y axis, respectively. Two threats with a 
similar impact but different likelihoods are depicted. Threats with 
high impact and high likelihood yield a higher risk.
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Figure 4  An example of state and residue signals of a networked 
control system under a stealthy deception attack starting at time .k0  
The plot to the left depicts the plant’s state trajectory x  under the 
attacked control and measurement signals ( , ) .u u y yD D+ +  The 
safe set Sx  is indicated by the shaded region. The plot to the right 
depicts the instantaneous norm r^ h of two residue signals, 
namely the actual residue signal (red) and the ideal one (green). 
The actual residue signal is computed by the anomaly detector 
based on the available signals ( , );u y yD+  see Figure 1. In this 
case, the residue norm is always smaller than ,d  thus the attack is 
not detected while the adversary succeeds in driving the plant state 
out of the safe set as intended. On the other hand, if the true mea-
surement signal y  is available to the anomaly detector, the residue 
computed from ( , )u y  successfully detects the attack.
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the threat’s likelihood because the sensors are often geo-
graphically distributed in networked control systems. As a 
result, coordinated attacks compromising multiple sensors 
need to be carried out simultaneously in different locations 
and are therefore difficult to implement.

The model in Figure 1 is simplified in two regards. First, 
the plant is in steady state. That is, in (5) the state vector kh  
is constant for all ,k  so the subscript k  is omitted. The 
second simplification is that there is no feedback control. 
The simplifications are made because they can lead to a 
more streamlined illustration of the main concept of risk 
assessment. In addition, the simplified structure is relevant 
in its own right in analyzing the cyberphysical security of 
power systems. The risk assessment for general dynamic 
models will be deferred to a later section.

The model for risk assessment is the relationship between 
the static plant states x  and the measurements yu  received by 
the anomaly detector. This is described by the expression

,y C x yy D= +u

where Cy  is the measurement matrix, and yD  is the mea-
surement data attack. In a typical static state estimation 
problem, such as the power network case, there are more 
measurements than states, and hence Cy  is assumed to have 
full column rank [42], [43]. Based on the risk assessment 
model, the least-squares estimate of the states is ( ) ,C C C yy y y

1< <- u  
and the estimate of measurements can be expressed as 

( ) .C C C C yy y y y
1< <- u  Thus, the anomaly detector, which is based 

on measurement residue, can be described by

	 ( ) .r Sy I C C C C yy y y y
1_ = - < <-u u^ h � (6)

Such an anomaly detector is, in general, sufficient to detect 
yD  in the form of a single error involving only one faulty 

measurement [42], [43]. However, in the face of a coordi-
nated malicious attack on multiple measurements, the 
anomaly detector can fail. In particular, in [44] it was 
reported that an attack of the form

	 ,y C xyD D= � (7)

for an arbitrary xD  would not result in any additional resi-
due in (6), apart from the residue caused by other factors, 
such as measurement noise. In fact, the set of stealthy 
deception attacks with respect to the anomaly detector (6) 
and a zero detection threshold is characterized by (7), and 
these attacks were also experimentally verified in a realis-
tic test bed [8]. Although stealthy attacks may be obtained 
from (7), distinct choices of xD  may yield attack vectors yD  
requiring significantly different amounts of adversary 
resources, in terms of the number of nonzero entries of the 
attack vector .yD  This number is also an indicator of the 
likelihood of the success of stealthy attack, as discussed 
earlier in this subsection. The rest of this subsection focuses 

on the characterization of the stealthy attack vectors with 
the minimum number of nonzero entries, as a concrete 
example of the quantitative method for risk assessment.

Minimum-Resource Attacks
There is a significant amount of literature studying the 
stealthy attack (7) and its consequences to state-estimation 
data integrity (for example, [15] and [44]–[49]). It was shown 
numerically that stealthy attacks y C xyD D=  are often 
sparse [44]. To analyze the stealthy attacks with the mini-
mum number of nonzero entries, in [15] the notion of secu-
rity index ja  for a measurement j  was introduced as the 
optimal objective value of the following cardinality mini-
mization problem
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where C xy 0D  denotes the cardinality (that is, the number 
of nonzero entries) of the vector ,C x jyD  is the label of the 
measurement for which the security index ja  is computed, 
and ( , :)C jy  denotes the thj  row of .Cy  The security index 

ja  is the minimum number of measurements an attacker 
needs to compromise to attack measurement j  without 
being detected by the anomaly detector. In particular, a 
small ja  implies that measurement j  is relatively easy to 
compromise in a stealthy attack, therefore indicating the 
higher likelihood of such a threat. As a result, the knowl-
edge of the security indices for all measurements allows 
the network operator to pinpoint the security vulnerabili-
ties of the network and to better protect the network with 
limited resources. For example, [45] proposed a method to 
optimally assign limited encryption protection resources 
to improve the security of the network based on its secu-
rity indices.

The security index (8) is a quantitative tool for risk as-
sessment that can provide a security assessment the stan-
dard detection procedure [42], [43] might not be able to 
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Figure 6  A diagram of the risk management cycle. Risk of threats 
is continuously minimized by iteratively performing risk analysis, 
risk treatment, and risk monitoring.
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provide. As a concrete example [15], consider the measure-
ment matrix
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The “hat matrix” [42], [43], denoted ,K  captures how the 
received measurements yu  are weighted together to form a 
measurement estimate yt  and is defined according to

( ) .y C x C C C C y Kyy y y y y
1 _= = < <-t t u u

Corresponding to the Cy  in (9), is the hat matrix
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The rows of the hat matrix can be used to study the mea-
surement redundancy [42], [43]. Typically a large degree of 
redundancy (many nonzero entries in each row) is desir-
able to compensate for noisy or missing measurements. In 
(10), all measurements are redundant in this example 
except the fourth. Such nonredundant measurement is 
called a critical measurement. Without the critical mea-
surement, observability is lost, meaning that it becomes 
impossible to uniquely determine the states based on the 
available measurement information. The hat matrix indi-
cates that the critical measurement is sensitive to attacks. 
This is indeed the case, but some other measurements can 
also be vulnerable to attacks. The security indices ,ja  

, , ,j 1 5f=  respectively, are 2, 3, 3, 1, 2. Therefore, the fourth 
(critical) measurement has security index one, indicating 
that it is vulnerable to stealthy attacks. However, the first 
and the last measurements also have relatively small secu-
rity indices. This is not obvious from K  in (10). Hence, the 
information of the security indices can enhance the vulner-
ability analysis compared to the hat matrix.

Because of the cardinality minimization, computing the 
security indices can sometimes be hard. In fact, it can be 
established that problem (8) is NP-hard using techniques 
from [50] and [51]. As a result, known exact solution algo-
rithms for (8) are enumerative by nature. Three different 
typical exact algorithms include a) enumeration on the sup-
port of ,C xyD  b) finding the maximum feasible subsystem 

for an appropriately constructed system of infeasible 
inequalities [52], and c) the big M  method (for example, 
[53]). This article focuses on the big M  method because the 
resulting optimization problem can be modeled and solved 
using available software such as CPLEX. The big M  method 
sets up and solves the following optimization problem.
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In (11), the inequalities are interpreted entry-wise, and 
M0 < < 3  is a user-defined constant scalar. If M  is greater 

than the maximum entry of C xyD *  in absolute value, for 
some optimal solution xD *  of (8), then the optimal solution 
to (11) is exactly an optimal solution to (8). Otherwise, solv-
ing (11) yields a suboptimal solution, optimal among all 
solutions xD  such that the maximum entry of C xyD  is less 
than or equal to M  in absolute value. The procedure 
described in [54] can always find a sufficiently large M  to 
ensure that the big M  method indeed provides the optimal 
solution to (8). In addition, the physics and insights of the 
underlying application problem can also lead to a suitable 

.M  The optimization problem in (11) is a mixed integer 
linear programming (MILP) problem; see “Mixed Integer 
Linear Programming” for additional details.

For large-scale system analysis, it might be deemed 
impractical to obtain the exact solution to the security 
index problem in (8). In this case, it might be necessary to 
settle for an approximate solution instead. A particular 
method to obtain an approximate solution is 1,  relaxation. 
For general information about 1,  relaxation; see, for exam-
ple, [55]–[57]. Here the properties that are most relevant  
to this article are described. Instead of solving (8), the 1,  
relaxation method sets up and solves the following optimi-
zation problem:
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where C xy 1D  denotes the vector 1, -norm (sum of absolute 
values of the entries) of .C xyD  In addition, the right-hand 
side of the constraint in (12) needs to be normalized to 
ensure that the problem is well posed. Problem (12) can be 

For each attack scenario, the attack policy is designed according to the 

adversary’s intent, namely the attack goals and constraints.
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written as a linear program. Hence, it can be solved effi-
ciently to obtain an exact optimal solution. The optimal 
solution to (12) is feasible to problem (8) because ( , :)C j x 1y D =  
implies ( , :) .C j x 0y !D  Therefore, the optimal solution to (12) 
is an approximate solution to (8), with the former leading to 
an objective value that is greater than or equal to the true 
minimum of (8). Therefore, the 1, -relaxation approach pro-
vides an overestimate of the security index.

An alternative approach to handle the large-scale system 
computation difficulty is to develop specialized algorithms 
for particular instances of (8). For example, when the under-
lying application is power network state estimation and 
when the measurement system satisfies certain assump-
tions, such as the full measurement assumption to be 
described, problem (8) can be solved exactly in a time-effi-
cient manner. The details of this result and an illustration 
with large-scale numerical examples when applied to elec-
tric power systems will be given in the following section.

Risk Analysis and Treatment for  
Electric Power Network
Power transmission networks are complex and spatially 
distributed systems. They are operated through SCADA 
systems, which represent the backbone IT and control 
infrastructure, as illustrated in Figure 7. SCADA systems 
collect data from remote terminal units (RTUs) installed 
in substations and relay aggregated measurements to the 

central master station located at the control center. The 
technological limitations of legacy measurement equip-
ment limits the sampling periods to the order of tens of 
seconds, thus the system is mainly observed at a quasi-
static state.

SCADA systems for power networks are complemented 
by a set of application-specific software, usually called 
energy management systems (EMSs). EMSs enable state 
and measurement estimation and optimal operation under 
safety and reliability constraints by providing human 
operators with state-awareness and recommended control 
actions. In the past, the malfunction of EMS components, in 
particular the state estimator, has led to a large-scale black-
out with severe economic consequences [58]. Furthermore, 
as discussed in [2], there are several vulnerabilities in the 
SCADA system architecture, including the direct tamper-
ing of RTUs, communication links between the RTUs and 
the control center, and the IT software and databases in the 
control center. Thus cybersecurity of SCADA and EMS in 
power networks is of major importance.

Given the relevance of power networks, in this part of 
the article the risk assessment method described in the pre-
vious section on static models will be specialized to the 
case where the plant is an electric power network. Focusing 
on the power network case enables the risk assessment to 
be performed in a computationally efficient manner. In 
addition, some of the risk treatment tools for power 

Mixed Integer Linear Programming
mixed integer linear programming (MILP) problem is an 

optimization problem over both real and integer decision 

variables with a linear objective function and linear constraints. 

It is basically an LP problem except that some of the decision 

variables are integer valued. In general, an MILP problem can 

be written as
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where , B, bA  are matrices or a vector with commensurate di-

mensions. If the integer constraint is relaxed, an MILP problem 

becomes an LP problem. The MILP problem has many applica-

tions (for example, [53]). For instance, 0 1-  binary decision vari-

ables can be used to model logical “on–off” decisions. If x1  and 

x2  are both 0 1-  binary decision variables, then the constraint 

x x 11 2+ =  means that either x 11 =  or x 12 =  but not both. This 

modeling capability is not available with an LP, because LP de-

cision variables can take fractional values. Another well-known 

example of MILP modeling is the traveling salesman problem, 

where a map of cities and pairwise distances between cities are 

given and the salesman has to make a shortest-distance tour 

visiting each city exactly once. The traveling salesman problem 

has many important applications including circuit-board drilling 

and DNA sequencing. The MILP model of the traveling salesman 

problem cannot be relaxed to an LP model since the decision 

of whether or not a road is traversed is a binary one. The MILP 

problem is NP-hard, as it includes as a special case the 0 1-  

integer program. As a result, unless ,P NP=  it is impossible to 

find a polynomial-time algorithm to solve the MILP problem. This 

implies that the computational effort for solving MILP problems in 

general increases very rapidly as the size of the problem increas-

es. For example, suppose that a basic computation requires 

10–9 s to perform on a computer. On a graph with | |V 30=  nodes 

and | | | | (| | ) /E V V 1 2= -  edges, to solve the traveling salesman 

problem by enumeration requires ( )O 2| |E  basic computations, or 

about 2 10122#  years. On the other hand, for the same graph, 

if instead the minimum cut problem is solved with a polynomial-

time algorithm that requires (| | | | | | (| |))logO V E V V2+  basic 

computations, then the solution time is only about 17 ms. Nev-

ertheless, solution algorithms for the MILP problem are well 

studied and well developed. They include, for instance, branch-

and-bound methods and cutting-plane methods. Software im-

plementations of MILP problem solution algorithms include, for 

example, CPLEX [69] and Gurobi [70].

A
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network applications will be highlighted. At the end of this 
section, a numerical case study with IEEE benchmark sys-
tems will illustrate the effectiveness of the risk assessment 
tools described in this section.

DC Power Flow Measurement Model
Assume that the electric power network has n 1+  buses 
and L  transmission lines. The state of the network is deter-
mined by the complex voltages at the buses, whose magni-
tudes and phase angles are, respectively, denoted by Vi  
and xi  for , , , .i n0 1 f=  In power networks, commonly con-
sidered measurements include line power flows, bus 
power injections, bus voltage magnitudes, and line current 
flow magnitudes. This section focuses only on active 
power flows on transmission lines and active power injec-
tions at buses, which are functions of the bus voltage mag-
nitudes and phase angles. However, for the analysis of 
cyberphysical security, bad-data detection, and network 
observability, it is customary to describe the dependency 
of active power flows and injections through an approxi-
mate model called the dc-power flow model. By assuming 
that the voltage magnitudes Vi  are all fixed to 1 p.u. (that 

is, unity in the per unit system [42]), the 
dc power flow model depends only on 
the voltage phase angles. In this model, 
the transmission-line active power flow 
from bus i  to bus j  is

	 ,P X
x

ij
ij

ij
= � (13)

where :x x xij i j= -  and X 0>ij  is the reac-
tance of the line between bus i  and bus .j  
On the other hand, the active power injec-
tion at bus i  is

	 ,P Pi ij
j Ni

=
!

/ � (14)

where Ni  is the set of all indices of the 
neighboring buses of bus ,i  excluding .i

Equations (13) and (14) give rise to a 
linear measurement model in matrix-vec-
tor form. Let x  denote the n-vector of volt-
age phase angles on all buses except the 
reference bus. The reference bus is arbi-
trarily defined, with voltage phase angle 
fixed at zero. In addition, let y  denote the 
vector of active power flow and active 
power injection measurements. Then, y  
and x  are related by the equation
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In (15), the term T D xAl
<  corresponds to 

transmission line power flow measure-
ments. On the other hand, the term 

T D xA Ai 0
<  corresponds to power injection measurements. 

The symbols in (15) are as follows: RA ( )n L
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1! #+  is the inci-
dence matrix of the network defined as
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The directions of the lines in A0  are irrelevant to the 
application in this article. They can be fixed arbitrarily. 
Matrix A  is the truncated incidence matrix with the row of 
A0  corresponding to the reference bus removed. Matrix D  
is a diagonal matrix with the diagonal entries being the 
reciprocals of Xij  for all lines. Matrices Tl  and Ti  are stacked 
by the rows of identity matrices, and they indicate which 
line power flows and bus power injections are actually 
measured. The total number of rows of Tl  and Ti  is the total 
number of measurements, which is denoted by .m  The 
matrix Cy  is again referred to as the measurement matrix.

The measurement model in (15) has a network potential 
flow interpretation. A particular x  corresponds to an 
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Figure 7  A schematic diagram of the electric power network and supervisory control 
and data acquisition (SCADA) system, adapted from [58]. Measurements taken from 
the remote terminal units (RTUs) are sent through the SCADA system to the control 
center. The received measurements are used by several energy management system 
applications that provide state awareness and control recommendations to human 
operators. The human operators decide the appropriate control actions and apply them 
to the power network through the SCADA system.
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assignment of the bus voltage phase angles. The phase 
angle differences between two neighboring buses induce 
power flows along the connecting lines. The vector of 
induced line power flows is described by .D xA<  At each 
bus, any difference between total incoming and total out-
going line power flows has to be balanced by an external 
power injection or extraction. The vector of external power 
injections at the buses is described by .D xA A0

<  The matri-
ces Tl  and Ti  allows the flexibility that all line power flows 
and bus power injections are not measured. The network 
potential flow interpretation is illustrated in Figure 8.

Security Index Problem Under dc Power Flow Model
In this section, unless otherwise noted, the security index 
problem in (8) should be interpreted with the measurement 
matrix Cy  restricted to the form in (15). With the restriction 
of ,Cy  problem (8) has a network potential flow interpreta-
tion. The vector xD  can be considered as an assignment of 
fictitious voltage phase angles. The constraint in (8) states 
that either a particular line has a nonzero flow or a particu-
lar bus has a nonzero injection, depending on the meaning 
of measurement .j  The objective is to minimize C xy 0D =

,T D x T D xA A Al i0 0 0D D+< <  being the sum of the num-
ber of lines with nonzero measured flows and the number 
of buses with nonzero measured injections.

Even though Cy  is specialized, (8) is still NP-hard [59]. 
However, (8) becomes solvable in polynomial time under 
certain additional assumptions. One such example is when 
Tl  is an identity matrix and Ti  is a zero matrix. In this case, 
minimizing the number of lines with nonzero phase angle 
differences is the only objective. It can be seen that an 
assignment of xD  using only two distinct values (say zero 
and one) is optimal. In fact, the above assumption can be 
generalized: the 0 1-  assignment remains optimal if both 
Tl  and Ti  are identity matrices of appropriate dimensions 
[59]. In this case, all line power flows and bus injections are 
measured and the condition is referred to as the full mea-
surement assumption. In summary, under the full measure-
ment assumption, (8) is equivalent to

	
( , :) .

minimize

subject to

C x

C j x 0
{ , }x

y

y

0 1 0n

!

D

D
!D �

(16)

The only difference between (8) and (16) is that the decision 
vector of real numbers in (8) is replaced by the decision 
vector of 0 1-  binary values in (16).

The 0 1-  assignment of the entries of xD  in (16) leads to 
yet another graph interpretation. The binary choice of 
entries of xD  specifies a partitioning of the buses into two 
disjoint sets, a set with buses with fictitious voltage phase 
angles being zero and the complementary set. A line con-
necting two buses in two different sets is cut. The objective 
is to minimize the sum of the number of cut lines with line 
power flow meters and the number of buses that have injec-
tion meters and are incident to at least one cut line. The con-

straint can also be described as a particular line being cut 
[59]. As a result, (16) can be interpreted as a generalization of 
the standard minimum cut problem; see “Standard Mini-
mum Cut Problem.” The only difference is that the standard 
minimum cut problem does not consider the cost associated 
with the number of buses incident to cut lines. The general-
ized minimum cut problem is illustrated in Figure 9.

The optimal solution to the generalized minimum cut 
problem can be interpreted in an alternative way: if all 
transmission lines in the cut are removed, then the remain-
ing network contains at least two isolated subnetworks. 
This, in fact, implies that the measurement system with the 
compromised measurements removed is unobservable 
because it is impossible to deduce the phase angle informa-
tion of one subnetwork from the information of another 
subnetwork [60]. In fact, in [26] it was shown that a set of 
compromised measurements is the optimal solution to the 
security index problem (8) if and only if the set is a sparsest 
critical tuple containing the target measurement .j  A criti-
cal tuple is a set of measurements whose removal renders 
the remaining measurement system unobservable, but the 
removal of any strictly proper subset of the critical tuple 
would not lead to loss of observability. The interpretation 
of the security index problem optimal solution set as a crit-
ical tuple is illustrated in Figure 10. While this article 
focuses on interpreting the security index problem as a 
power network observability problem, the converse inter-
pretation can be utilized to solve an observability analysis 
problem as a security index problem; see [61] for details.

Bus 1

P1 = P21 + P31

Bus 2

Bus 3

Bus 4 Bus 5

P31 = 
x3 - x1

x13

P21 = 
x2 - x1

x12

Figure 8  Potential flow interpretation of the line power flows and 
bus power injections. Buses 1–5 each have an assignment of 
voltage phase angle , , , ,x x x x1 2 3 4  and ,x5  respectively. The 
phase angle differences x x2 1-  and x x3 1-  each induce line 
power flows P 12  on the line connecting bus 1 and bus 2 and P31  
on the line connecting bus 1 and bus 3, respectively. The net 
injection of power flows into bus 1 is balanced by the external 
extraction ,P1  which is the bus injection at bus 1 with a negative 
value. All line power flows are stored in the vector .D xA<  All 
power injections are stored in the vector .D xA A0

<  The mea-
surement vector z  in (15) contains a subset of all line power 
flows and bus injections. The selection is achieved through Tl  
and .Ti  In the figure, the black squares indicate the meters. Only 
the flows or injections with meters are measured. 
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The generalized minimum cut problem can be solved in 
polynomial time, due to its connection to the standard mini-
mum cut problem, which is polynomial-time solvable [62]. 
The main result is that an instance of the generalized mini-
mum cut problem is equivalent to an instance of the stan-
dard minimum cut problem on an auxiliary graph that is 
roughly three times as large as the original graph [59]. Addi-
tionally, the auxiliary graph can be constructed efficiently. 
As discussed in “Mixed Integer Linear Programming,” the 
minimum cut problem has much lower computational com-
plexity than enumeration methods. Therefore, the general-
ized minimum cut formulation can potentially be applied to 
large problems, as illustrated in the case studies reported at 
the end of this section.

In summary, given an instance of the security index 
problem in (8) under the full measurement assumption or 
similar conditions found in [59], it can first be specialized 
by restricting the entries of xD  to either zero or one, as in 

problem (16). The specialized problem can be viewed as an 
instance of the generalized minimum cut problem. Then, 
an instance of the standard minimum cut problem on an 
auxiliary graph can be set up and solved in polynomial 
time. The solution to the standard minimum cut problem 
can be used to construct the solution to the security index 
problem due to the equivalence mentioned above. Notice 
that, even without the full measurement assumption, the 
solution to problem (16) still serves as an overestimate of 
the true security index. In particular, the security index of 
a measurement must be small if the overestimate is small. 
This indicates the vulnerability of the measurement. The 
accuracy of this approach was demonstrated in [59].

Risk Treatment Approaches
One possible approach to decrease the risk of stealthy decep-
tion attacks is to encrypt the data and communication chan-
nels. Since a large part of today’s power grid equipment is 

Standard Minimum Cut Problem

A standard minimum cut problem (on an undirected graph) is 

an optimization problem whose instance is defined by an un-

directed graph with nonnegative edge weights and two distinct 

nodes called source and sink; see Figure S3 for an illustration. 

The problem seeks a partition of the set of all nodes into two 

parts, with the source in one part and the sink in the other part, so 

that the sum of the weights of cut edges is minimized. An edge is 

cut if and only if it has one end node in the partition part including 

the source and the other end node in the partition part includ-

ing the sink; see Figure S4 for an illustration. As an application, 

consider the network in Figure S3 as a power network s is the 

supply (generator) and t  is the demand (load), respectively. If all 

edge weights are set to unity, then the solution to the minimum 

cut problem specifies the minimum number of transmission lines 

to break to cause the disruption of power supply.

Efficient solution algorithms are available to solve the stan-

dard minimum cut problem with computation effort proportional 

to a polynomial function of the size of the problem. The algo-

rithms can be direct [62], or based on solving the dual maximum 

flow problem enabled by the max-flow, min-cut theorem [71].
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Figure S3 An instance of a minimum cut problem is defined on 
an undirected graph with nonnegative edge weights. The nodes 
s and t  denote the source and sink, respectively. For an edge 
connecting node i  and node ,j  the quantity w 0ij $  is the cor-
responding edge weight.

1

ws1

ws2

ws3

w23

w35

w34

w3t

w4t

s

2

3

5

4

t

w13

Figure S4 A feasible solution of the minimum cut problem is a 
partition of the nodes into two parts, color coded by blue and red 
in this illustration. A constraint of the minimum cut problem is 
that the source (node s) and the sink (node t ) must be in two 
different parts. In this case, the source is blue and the sink is red. 
The partitioning of the nodes induces a cut of the edges. An 
edge is cut if and only if it connects nodes in different parts in the 
partition. In this illustration, only edges { , }, { , }, { , },s1 3 3 2 3  and 
{ , }3 5  are cut, as indicated by the green bars. The objective 
value corresponding to the particular node partition is the sum of 
the weights of cut edges, which is .w w w ws13 3 23 35+ + +  The 
minimum cut problem seeks the partition of nodes separating s  
and t  with the minimum total weights of cut edges.
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old, data encryption can be costly to implement because of 
the corresponding update of the equipment. Therefore, the 
following question is of great importance to measurement 
data integrity. Given limited protection resources (the 
number of devices for data encryption), which measure-
ments should be encrypted to maximize the benefits of the 
protection resources? The risk analysis outcome from com-
puting the measurements’ security indices may be used to 
sort the measurements in terms of their vulnerability and 
identify those that should be protected. In fact, a variant of 
the security index problem can help provide an answer to 
the previous question, namely

	 ( , :) ,
( , :) ,

minimize

subject to

C x

C j x
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where P  is the index set of the encrypted measurements, 
which cannot be attacked. By comparing the security indi-
ces for different index sets ,P  it is possible to evaluate the 
effect of different protection strategies and determine the 
best one to implement. For example, [28] considers a lexico-
graphic optimization of some security metrics that are 
based on the security index computation related to (17).

In the case where it is impractical to encrypt all mea-
surements, it becomes critical to detect and isolate the mea-
surements that are under attack. Effective attack isolation 

enables the damage control (for example, removing 
attacked measurements for state estimation) to be per-
formed in a timely fashion, that is, before the attack can 
lead to an incident with significant consequences. A dis-
tributed procedure for isolating the data attacks on power 
system transmission line power flow measurements is pre-
sented in [63], based on secure bus voltage magnitude mea-
surements. The work in [18] develops a generalized 
likelihood ratio test to detect the presence of data attack, 
based on the assumption that the normal measurements 
follow a known Gaussian distribution. Mechanisms to 
detect data attacks based on known-secure phasor mea-
surement unit PMU measurements and a known pattern of 
system states are presented in [29].

Security Index Problem Case Studies on the  
Benchmark Systems
As a numerical demonstration, the security index problems 
for all measurements in two benchmark systems are consid-
ered. The two benchmarks are the IEEE 14-bus and IEEE 118-
bus systems [64]. In this case study, all line power flows and 
bus injections of the benchmark systems are measured. In 
other words, the full measurement assumption holds and 
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Figure 9  An illustration of the generalized minimum cut problem. 
An instance of the generalized minimum cut problem is defined by 
the graph with node weights pi  and edge weights ,wij  as well as the 
designation of the source node s and the sink node .t  The node 
weights and the edge weights are nonnegative. They indicate the 
number of meters on the buses and lines, respectively. Any partition 
of the set of all nodes into two parts, with s being in one part and t
being in the other part, corresponds to a feasible solution to the 
generalized minimum cut problem. The partition of the nodes 
induces a cut. An edge is cut if and only if it has an end node in one 
partition and the other end node in the other partition. The edges 
{ , }, { , }, { , },3 4 3 5 3 6  and { , }3 7  are colored blue and are cut. The sum 
of the weights of the cut edges contribute to part of the objective 
value of the optimization. In addition, a node incident to a cut edge 
is also “in the cut.” In this example, nodes 3, 4, 5, 6, and 7 are in the 
cut and have red boundaries in the illustration. The sum of weights 
of the nodes in the cut contribute to the other part of the objective 
value. The total objective value associated with a node partition is 
the sum of all cut edge weights and all cut node weights.

Bus 1

Bus 2

Bus 3

Bus 4 Bus 5

Figure 10  The optimal set of compromised measurements in a 
security index problem can be interpreted as a critical tuple of the 
measurement system. The security index problem with the line 
power flow measurement on line { , }4 5  is solved with line { , }4 5  
being the optimal solution. Removing line { , }4 5  renders bus 5 an 
isolated bus in the remaining network. It is then impossible to 
deduce the phase angle at bus 5 from the phase angle information 
of the remaining subnetwork and vice versa. The power flow mea-
surement on line { , }4 5  is a critical measurement (that is, critical 
one-tuple) and hence .1a =  On the other hand, for the case where 
line { , }1 2  is the target, the security index is two with three possible 
optimal sets of compromised lines: {{ , }, { , }},1 2 1 3  {{ , }, { , }},1 2 3 4  
{{ , }, { , }}1 2 2 4  but not {{ , }, { , }}1 2 4 5  because the last set does not dis-
connect bus 1 from bus 2. All solution sets of the security index 
problem are critical pairs (that is, critical two-tuples, 2a = ), but 
{{ , }, { , }}1 2 4 5  is not because removing the measurement on line 
{ , },4 5  which forms only a strictly proper subset of {{ , }, { , }},1 2 4 5  still 
renders the measurement system unobservable.
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the security index can be computed by solving (16). Figure 11 
shows the IEEE 14-bus system with measurements color 
coded to indicate which ones are more vulnerable to stealthy 
data attack and which ones are resilient. The criterion to 
determine the vulnerability of the measurements is the 
security index. Measurements with small security indices 
(value lower than seven in Figure 11) are considered vulner-
able and are color coded red. In particular, the injections at 
bus 7 and bus 8 as well as the line power flow between these 
two buses are vulnerable. This agrees with intuition, because 
bus 7 and bus 8 are on the boundary of the system with rela-
tively little redundancy. On the other hand, the measure-
ments located in the middle of the system (such as the 

injection at bus 5) are considered resilient, with security 
indices much greater than seven. This also agrees with intu-
ition: the measurements in the middle have great redun-
dancy. The resilient measurements are color coded green in 
Figure 11. The rest of the measurements are color coded blue 
in Figure 11, with security index equal to seven. They are 
considered neither vulnerable nor resilient.

Next, the security index computation with the IEEE 118-
bus system is considered. See Figure 12 for an illustration of 
this system. Figure 13 shows the sorted security indices for 
the measurements, computed using the minimum-cut-based 
procedure described in the previous subsection. The compu-
tation takes about 0.17 s on a personal laptop. On the other 
hand, when the big M  method in (11) is used to compute the 
same security indices, the computation time is about 118 s. 
Figure 13 indicates that a significant number (about 40) of the 
measurements have relatively small security indices (values 
equal to four). In addition, there are a large number of mea-
surements with security indices of seven. The efficient com-
putation of the security indices is particularly relevant for 
real-world applications. Two motivations are presented 
below. First, the simplest realistic power network model con-
tains at least thousands of buses (for example, the CAISO 
model contains 4000 buses). More realistic models in future 
applications are expected to grow in complexity. Thus, the 
time requirement for solving the security index problem can 
become excessive unless scalable computation procedures 
such as the minimum-cut-based one described in this article 
are available. Second, the security index computation pre-
sented so far is only for analysis purposes. In control design 
and synthesis situations, it is expected that the security index 
problem would need to be solved many times. For example, if 
there are  mencryption devices to be employed, then it could 
take up to 2m  security index computations to determine the 
best configuration of encryption device deployment.

Risk Analysis for Dynamic Models
Having discussed methods for threat likelihood estimation 
in the static case, the dynamic case and methods for more 
general quantitative risk assessment are considered. The 
proposed risk assessment methods are not executed based 
on real-time data of the system. Instead, these methods are 
used offline, for a given configuration and corresponding 
model of the system, to assess the risk of different hypothet-
ical attack scenarios. Consider the time interval [ , ]N0  and 
define the vectors [ ]n N0 fh h= < < <  and [ ] ,a a aN0 f= < < <  which 
capture the system states and attack signals over the time 
interval of interest. The state and residue trajectories are 
described by the following static mappings obtained (5)
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where O  describes the effect of the initial condition 0h  on  
the system’s state trajectory, and T  is a lower triangular 
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Figure 11  The IEEE 14-bus benchmark system with all measure-
ments labeled different colors according to their resilience against 
stealthy data attack. The vulnerable measurements have small 
security indices ( )7<  and are color coded red. The resilient mea-
surements have large security indices ( )7&  and are color coded 
green. The other measurements are color coded blue and their resil-
ience lies somewhere in between. The efficient computation of secu-
rity indices enables the rapid determination of the security weak 
points in the measurement system.

Figure 12  The IEEE 118-bus benchmark system [64].
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block-Toeplitz matrix mapping the attack signals to the state 
trajectory; see [27] for details. For simplicity, 0h  is assumed to 
be zero. These mappings can be used for risk assessment of 
deception attacks on networked control systems, as described 
in the remainder of this section.

Maximum-Impact, Minimum-Resource Attacks
For illustration purposes, the quantitative risk assessment 
methods in the previous section considered only the adver-
sary resources. In this subsection, full risk assessment is 
performed on dynamical systems by simultaneously con-
sidering impact and resources. Recall that the adversary 
aims to perturb the networked control system operation 
and drive the system to an unsafe set. To better clarify the 
proposed approach, suppose that the safe set is defined as

{ : },x x <Sx p_ d

where x p  denotes the p, -norm of x  for ,p 1$  and x  depends 
on the attack signal a  as described in (18). Therefore, the attack 
impact during the time interval [ , ]N0  can be characterized as 
the perturbation of the state trajectory x  due to the attack 
quantified by .x p  Notice that the proposed framework can 
be straightforwardly applied to safe sets that consider linear 
transformations of the state trajectory.

To illustrate the resources required for a given attack 
signal, suppose that ukD  and ykD  are scalars and recall the 
attack vector at time ,k  [ ] .a u yk k kD D= <  Consider an attack 
having ukD  equal to zero for all ,k  while ykD  is equal to zero 
at all times except for .k 0=  Since y0D  is nonzero, the adver-
sary must have access to one communication channel to 
inject the false data, namely the measurement channel. The 
attack with y 0k !D  only at k 0=  requires as many resources 
as the one having y 0k !D  for ,k 2>  thus corrupting the 
measurement signal at other times does not require addi-
tional adversary resources. On the other hand, corrupting 
also the control signal such that u 0k !D  at a given time k  
requires an additional resource, namely the access to the 
control signal. More generally, the attack vector can be 
rewritten as [ , , ] ,a a a( ), ( ),k k n k1 af= <  where a R( ),i k !  denotes 
the corrupted data introduced in the i th adversary resource 
at time .k  Denoting the attack signal at the i th resource by 

[ , , ] ,a a a( ) ( ), ( ),i i i N0 f= <  the i th resource is used during the 
attack if a( )i p  is nonzero. Defining the vector

( ) [ ] ,a a ah ( ) ( )p p n p1 af_ <

the number of resources used in a given attack corresponds 
to the number of nonzero elements of ( ),ahp  which is 
denoted as ( ) .ahp 0

The attack impact and resources are jointly considered 
in the multiobjective optimization problem [65]
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where x  and r  are determined by a  according to (18). The 
multiobjective optimization problem (19) can be interpreted 
as computing the attack signal a  that simultaneously maxi-
mizes the impact x p  and minimizes the resources 

( ) ,ahp 0  while remaining stealthy by ensuring .r q # d

The tradeoff analysis in the multiobjective optimization 
problem can be performed by studying the Pareto solutions 
[65]. These solutions can be obtained through several tech-
niques, for instance, the bounded objective function method 
in which all but one of the objectives are posed as constraints, 
thus obtaining a scalar-valued objective function. Applying 
this method to (19) and constraining ( )ahp 0  yields
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which can be interpreted as a maximum-impact resource-
constrained attack policy.

The Pareto frontier that characterizes the optimal tradeoff 
manifold can be obtained by iteratively solving (20) for 

{ , , } .n1 af!e  For a fixed e  and ,p q 3= =  the optimization 
problem (20) can be formulated as an MILP, while the problem 
with parameters 3e =+  and p q 2= =  reduces to a general-
ized eigenvalue problem; see [27] for a detailed discussion.

0 50 100 150 200 250 300 350 400 450 500
4

6

8

10

12

14

16

18

Rank Measurement Index

S
ec

ur
ity

 In
de

x

Figure 13  Sorted security indices for the fully measured 118-bus 
system. The minimum-cut-based procedure computes the indices 
in about 0.17 s, while the big M  method in (11) requires 118 s to 
obtain the same result. This figure indicates that a significant 
number (about 40) of the measurements have relatively small secu-
rity indices (values equal to four). In addition, there are a large 
number of measurements with security indices of seven. The effi-
cient computation of the security indices allows the network opera-
tor to quickly assess the security of the power network and to 
identify the weak points.
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Case Study: Quadruple-Tank Process
Risk analysis and risk treatment approaches for dynamic 
control systems are illustrated for a particular networked 
control system in this section. The physical plant consists of 
the quadruple-tank process (QTP) [66], depicted in 
Figure 14, while the networked control system architecture 
is depicted in Figure 15.

The plant model is
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where [ , ]h 0 30i !  are the heights of water in each tank, Ai  
is the cross-sectional area of each tank, ai  is the cross-sec-
tional area of each tank’s outlet, ki  the pump constants, ic  
the flow ratios, and g  is gravitational acceleration. The 
nonlinear plant model is linearized for a given operating 
point and the state of the linearized plant model x  corre-
sponds to the water level deviations from the operating 

point. Moreover, given the range of the water levels and the 
operating point, the safe set is considered to be 

{ : } .x x 5RSx
nx! #= 3

The process is controlled using a centralized linear-qua-
dratic-Gaussian (LQG) controller with integral action run-
ning on a remote computer and a wireless network is used for 
the communications. A Kalman filter based anomaly detector 
is also running on the remote computer and alarms are trig-
gered according to (4). The measurements of the lower tanks’ 
water levels, y1  and ,y2  are sent to the controller and anomaly 
detector through the communication network. Given the 
received measurements y1u  and ,y2u  the LQG controller com-
putes the pump control signals, u1  and ,u2  which are sent to 
the water pumps through the wireless network. In the present 
attack scenario, the adversary can corrupt the data transmit-
ted through the wireless network, namely ,u1  ,u2  ,y1  and .y2

Risk Analysis for Stealthy Deception Attacks
For the time interval [ , ],0 50  the maximum-impact, mini-
mum-resource attacks were computed for the process in 
minimum and nonminimum phase settings by choosing 
p q 2= =  and iteratively solving (20) with respect to .e  The 
respective impacts correspond to the energy of the state 
signal x  for value of ,e  and are presented in Table 1, while 

h3
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h4

h2

Figure 14  A schematic of the quadruple-tank process [66]. The 
water pump to the left is controlled by the signal ,u1u  while the 
pump to the right is controlled through .u2u  The left pump forces 
water into tanks 1 and 4, where the fraction of water flowing into 
each tank is determined by the valve position .1c  Similarly, the 
fraction of water pumped to tanks 2 and 3 by the right-hand-side 
pump depends on .2c
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Figure 15  A schematic diagram of the test bed with the quadruple-
tank process and a multihop communication network. The control-
ler, sensors, and actuators communicate using a wireless network 
that has one relay node. The adversary is able to compromise the 
relay node and therefore has access to the control and measure-
ment channels.
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the risk is depicted by the risk matrix plot in Figure 16(a) 
(recall Figure 5).

As expected, the nonminimum phase system is less 
resilient than the minimum-phase one. In both settings, the 
attack impact can be made arbitrarily large by corrupting 
three or more channels, and thus the adversary can drive 
the state out of the safe set while remaining stealthy. The 
results indicate that the threats compromising three or 
more channels have high risk and should therefore be ana-
lyzed in more detail. The risk of such threats can be miti-
gated by protecting the data channels, which is shown in 
the next subsection.

For illustrative purposes, the maximum-impact attack 
signal for the nonminimum phase system with ,2e =  

. ,0 15d =  and p q 2= =  is presented in Figure 17(a). For the 
parameters ,2e =  . ,0 025d =  and ,p q 3= =  the maximum-
impact attack signal shown in Figure 17(b) was computed 
by solving an MILP; see [27]. In both cases the optimal 
attack corrupts both actuator channels and ensures 

,r p # d  while maximizing the attack impact. Although 
the impact results in Table 1 do not quantify the impact 
according to the safe set { : },x x 5RSx

nx! #= 3  the state 
trajectory does leave the safe set in both cases.

The attack signals illustrated in Figure 17 are related to 
the zero dynamics of the QTP system. The zero-dynamics 
attack signal and other scenarios were analyzed and per-
formed in an experimental test bed of the QTP by [13]. 
Videos of the experiments are available [67].

Risk Treatment Approaches
The risk analysis identifies the data channels that, when cor-
rupted, may lead to a large impact on the system. The subse-
quent step in the risk management framework is the risk 

Table 1 Risk analysis results for the quadruple-tank 
process. Each entry corresponds to the maximum impact 

x p  for a given number of corrupted channels, computed 
through (20), with 2p q= =  and . .0 15d =

Number of Compromised Channels

4 3 2 1

Minimum phase 3 3 140.39 1.15

Nonminimum 
phase

3 3 689.43 2.8
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Figure 16  The risk matrix plot for the quadruple-tank process (QTP) (a) without protection and (b) for the nonminimum phase case when 
different pairs of resources are protected. The threat’s likelihood is taken as a decreasing function of the number of compromised data 
channels, ( ) ,ahp 0  and corresponds to the x-axis. The threat’s impact on the y axis is the p, -norm of the state trajectory, x p . In (a), the 
risk analysis results for the minimum phase system (square) and nonminimum phase (circle) from Table 1 are depicted and qualitatively 
classified. The figure in (b) indicates that, when pairs of resources can be protected in the nonminimum phase process, the most effective 
choice for risk treatment is to protect both actuator channels, { , } .u u1 2
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treatment stage, in which actions reducing the risk are chosen 
and implemented. A common approach to decrease the risk 
of threats is to deploy protective resources such as encryp-
tion, thus preventing the attacks from occurring. To assess 
the effectiveness of protecting a given set of data channels P  
the optimization problem (20) may be modified to
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The QTP example is now considered to illustrate the risk 
treatment step using channel encryption. The preventive 
action under study is the encryption of one pair of data chan-
nels so that the risk is minimized. The optimization problem 
(21) is solved for each pair of data channels, and the corre-
sponding risk matrices plots are depicted in Figure 16(b).

From the results in Figure 16(b), it is evident that the pair 
of actuators { , }u u1 2  should be protected to minimize the 
risk. Moreover, recalling the original risk matrix plot in 

Figure 16(a), observe that the impact when two channels are 
corrupted is substantially decreased by protecting { , } .u u1 2  
This protection choice is expected since the adversary can no 
longer inject an attack exciting the unstable zero dynamics of 
the system when both actuators are protected. Furthermore, 
since the resources accessible to the adversary are y1  and ,y2  
the adversary cannot have a direct impact on the physical 
system but instead needs to affect the system through the 
feedback controller by corrupting the measurement signals.

Methods other than encryption have been proposed in 
the literature to reduce the risk of threats. Concerning replay 
attacks, [36] proposes the use of a hypothesis test as the 
anomaly detector and the injection of random, zero-mean 
Gaussian noise with an optimally designed covariance in 
the control input channels. The injected noise increases the 
performance of the hypothesis test since the noise statistics 
are assumed to be unknown to the adversary. Similarly, [30] 
proposes the insertion of uncertainty in the adversary’s 
model knowledge by modifying the system dynamics and 
control and output channels. The effects of such actions on 
zero-dynamics attacks are also characterized in detail.

Figure 17  Simulation results for the maximum-impact attack signal. The attack signal is computed by solving the multiobjective problem 
(20) with 2e =  for the nonminimum phase system using the parameters (a) ,p q 2= =  .0 15d =  and (b) ,p q 3= =  . .0 025d =  In (a) and 
(b), the top plot depicts the water level change in each tank, the middle plot illustrates the false-data signal injected in the first and second 
actuators, u( )1D  and ,u( )2D  respectively, while the bottom plot shows the running energy and peak of the residue signal.

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

-10 -10

-5

0

5

10

Le
ve

l o
f W

at
er

h1 h2 h3 h4

0 20 40 60 80 100

-5

0

5

10

Le
ve

l o
f W

at
er

−3

−2

−1

0

1

2

3

A
ct

ua
to

r 
Fa

ls
e 

D
at

a

0

0.05

0.1

0.15

Time (s)

(a)

R
es

id
ue

Du(1)

Du(2)

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

A
ct

ua
to

r 
Fa

ls
e 

D
at

a

Du(1)

Du(2)

||r||2
d

0 20 40 60 80 100
0

0.01

0.02

0.03

Time (s)

(b)

R
es

id
ue ||r||∞

d

h1 h2 h3 h4



FEBRUARY 2015 «  IEEE CONTROL SYSTEMS MAGAZINE  43

Conclusions and Future Work
The pervasive use of IT infrastructures supporting the 
operation of networked control systems has introduced 
vulnerabilities into these systems, raising numerous chal-
lenges regarding the cyberphysical security of networked 
control systems. The specific nature of these threats and 
the coupling between the cyber and physical realms of the 
system requires the development of new paradigms and 
frameworks to study and tackle security-related problems.

This article described a cybersecurity problem in net-
worked control systems, covering some of the key aspects 
such as the networked control-system architecture, the 
adversary model, and the defense methodology. The net-
worked control-system architecture consists of the physical 
plant, the feedback controller colocated with the anomaly 
detector, and the communication network, through which 
the measurement and control data are sent. The adversary is 
modeled by a resource-constrained policy with limited 
model knowledge, disruption resources, and disclosure 
resources. Moreover, the attack policy is shaped according 
the adversary’s intent: to drive the state of the physical plant 
to an unsafe region while remaining undetected by the 
anomaly detector. The defense methodology is based on the 
risk management framework, where the concept of risk is 
defined as a function of the threat’s likelihood and the 
threat’s impact to the system. The risk management cycle 
continuously minimizes the risk of threats by performing 
risk analysis, risk treatment, and risk monitoring.

Recent quantitative methods developed for risk analysis 
are also presented, which are of major importance to 
enhance the cyberphysical security of networked control 
systems. The problem of quantifying the likelihood of 
threats for static systems is discussed, and computationally 
efficient methods are described and illustrated for large-
scale electric power networks. Possible risk treatment 
approaches proposed in the literature are also mentioned.

Finally, the full risk analysis problem for dynamic sys-
tems simultaneously considering the attack impact and 
likelihood is described. The quantitative risk analysis 
methods are formulated and illustrated on the wireless 
QTP test bed. Additionally, the effectiveness of protection-
based risk treatment schemes is evaluated in terms of their 
effect on the risk of threats, and alternative approaches pro-
posed in the literature are summarized.

Possible extensions to the work described in this article 
include the study of efficient tools for risk assessment of 

dynamic systems and the analysis of attack and defense 
policies under noise and uncertain communication chan-
nels, among several other interesting directions.
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