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Foreword 

These notes are primarily concerned with stability and control of linear delay 
differential equations. This is an active area of research with most of the recent 
results available only through journals. These notes are an attempt to remedy 
this situation. 

The editors have chosen a variety of experts representing a broad spectrum 
of techniques. The authors of the chapters not only have given a good overall 
view of their subject but have also included an extensive bibliography as well as 
new and original results. Emphasis is placed on presenting the material in such 
a way that it can be directly applied to specific problems. Some attention also 
is paid to numerical schemes. 

This is a welcome addition to the subject and should be useful to theoreticians 
as well as practitioners. 

JACK HALE 
4/9/1997 



Introduct ion 

The idea of editing a book on the stability and stabilization of time-delay 
systems emerged in the spring of 1996. 

The two editors, Luc Dugard and Erik I. Verriest, participated in a French 
colloquium on "Analyse et commande des syst~mes avec retard" organized in 
Nantes in the framework of GDR CNRS "Automatique". Many other authors 
contributing to this book also participated to this colloquium and the audience 
was enlarged with researchers from different countries. It is noticeable that most 
authors also participate to the 4th European Control Conference, Brussels, July 
1-4, 1997, with an invited session dedicated to the stability and stabilization of 
continuous time delay systems. 

The study of continuous-time delay systems has known a growing interest, 
in the past decade, in the automatic control community. Time-delay systems 
can be '~tackled" from many points of view. In particular, the models of such 
systems can be considered as evolution in abstract systems, differential equations 
on rings or modulus, or as functional differential equations. 

Surprisingly, only few books and monographies are dedicated to this subject. 
Motivated and encouraged by the enthusiasm of Sitviu-Iulian Niculescu, who 
completed his Ph.D. dissertation on the stability and stabilization of continuous- 
time delay systems in early 1996, we decided to appeal to some specialists, recog- 
nized in the field, to edit a book on the subject, restricted to well-defined points. 
The book finds a niche in the time-delay system literature and should allow the 
interested reader to acquire a general idea of the problems posed by the stability 
and the stabilization of time-delay systems, as well as the various approaches 
and tools used to study and solve these problems. The book is characterized by 
a well defined spectrum. Stability analysis is studied in the first several chapters. 
Numerical aspects follow in the next ones. The stabilization problems are ex- 
amined later, with some extensions to robustness issues and nonlinear aspects. 
This provides a coherent unity to the book. 

The book consists of 14 chapters. The first chapter entitled "Stability and 
Robust Stability of Time-Delay Systems: A Guided Tour" is written by S.-I. 
Niculescu, E. I. Verriest, L. Dugard and J.-M. Dion. This chapter is intended 
to provide the reader with basic ideas on the various approaches to study the 
stability of time-delay systems. In particular, frequency domain and time do- 
main approaches yield stability criteria which can be delay dependent or delay 
independent. Some extensions are given for the robust stability of uncertain time- 
delay systems. The stabilization aspects are not directly tackled in this chapter, 
but the results can be used for the study of the stability of the closed-loop 
time-delay systems. 

The second chapter entitled "Convex Directions for Stable Polynomials and 
Quasipolynomiats: A Survey of Recent Results" is written by L. Atanassova, D. 
Hinrichsen and V. L. Kharitonov. This chapter presents very recent results on 
robust stability of time-delay systems in the frequency framework. The notion 
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of convex directions for stable polynomials and quasipolynomials is largely used 
here and applied to time-delay systems. This is a nice extension of some previous 
results on the stability of a polytope of polynomials or quasipolynomials, using 
the Edge Theorem. 

The third chapter entitled "Delay-Independent Stability of Linear Neutral 
Systems: A Riccati Equation Approach" is written by E. I. Verriest and S. 
I. Niculescu. The linear neutral time-delay systems form a particular class of 
time-delay systems. The derivative of the delayed state appears in the system 
equation. Delay independent stability conditions are given in terms of some 
appropriate Riccati matrix equation coupled with a Lyapunov equation. The 
existence of solutions to these equations can be expressed in terms of feasibility 
of linear matrix inequalities (LMI). 

The fourth chapter entitled "Robust Stability and Stabilization of Time- 
Delay Systems via Integral Quadratic Constraint Approach" is written by M. 
Fu, H. Li and S.-I. Niculescu. This chapter is devoted to robustness aspects 
using the integral quadratic criterion (IQC) approach. The stability conditions 
are expressed in terms of linear matrix inequalities. Based on these results, design 
procedures are given for the robust stabilization problem and explicit controller 
formulas are provided for static state feedback. 

The fifth chapter entitled "Graphical Test for Robust Stability with Dis- 
tributed Delayed Feedback" is written by E. I. Verriest. This chapter analyzes 
the performance degradation and stability margins for delay perturbations of a 
nominal state feedback control. Some conditions for stability of timewdelay sys- 
tems are re-interpreted as robust stability conditions and give frequency domain 
criteria. These criteria lead to interesting graphical methods that allow to derive 
stability margins in a straightforward way, in the spirit of the Nyquist criterion. 

The sixth chapter entitled "Numerics of the Stability Exponent and Eigen- 
value Abscissas of a Matrix Delay System" is written by J. Louisell. In this 
chapter, a method is presented, which is based on the analysis of the endpoint 
values of the solution to a functional equation occurring in the Lyapunov theory 
of delay equations. The existence of the solution to this functional equation is 
investigated in depth. A computational method is provided, that allows a very 
accurate determination of the system stability exponent. 

The seventh chapter entitled "Moving Average for Period Delay Differential 
and Difference Equations" is written by B. Lehman and S. Weibel. This chapter 
extends some seminal works on the theory of averaging. In particular, it is shown 
that the delay must not be neglected in the averaged system to better approxi- 
mate the dynamics of the original system. Two simple applications validate the 
developed theory on periodic delay differential and delay difference equations. 

The eighth chapter entitled "On Rational Stabilizing Controllers for Interval 
Delay Systems" is written by L. Naimark, J. Kogan, A. Leizarowitz and E. Zeheb. 
This chapter is mainly concerned by the question of stabilizability of systems 
with an interval delay and fixed coefficients by rational controllers and intends 
to explain how to design these stabilizing controllers. Robustness aspects are 
also considered, when uncertainty is assumed on the coefficients of the rational 
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transfer function. 

The ninth chapter entitled "Stabilization of Linear and Nonlinear Systems 
with Time Delay" is written by W. M. Haddad, V. Kapila and C. Abdallah. 
This chapter is concerned with the design of fixed order dynamic feedback com- 
pensators for the linear case. Static full state feedback controllers are obtained 
for the nonlinear systems under sufficient conditions. In both cases, delay inde- 
pendent conditions are provided. 

The tenth chapter entitled "Nonlinear Time Delay Systems: Tools for a 
Quantitative Approach to Stabilization" is written by J. P. Richard, A. Goubet- 
Bartholomefis, P. A. Tchangani and M. Dambrine. In this chapter, a fairly gen- 
eral study is made. Qualitative and quantitative stability results are provided. 
The use of the comparison approach linked with vector Lyapunov functions ap- 
pears as a simple and powerful tool for the study of nonlinear systems. 

The eleventh chapter entitled "Output Feedback Stabilization of Linear 
Time-Delay Systems" is written by X. Li and C. E. de Souza. A delay dependent 
method is developed for designing linear dynamic output feedback controllers. 
Robustness considerations are given for uncertain polytopic systems and efficient 
numerical procedures are provided. 

The twelfth chapter, entitled "Robust Control of Systems with A Single In- 
put Lag" is written by G. Tadmor. This chapter develops a state-space design 
methodology for Hoo problems and gap optimization in systems with a single 
input lag. 

The thirteenth chapter entitled "Robust Guaranteed Cost Control for Uncer- 
tain Linear Time-Delay Systems" is written by H. Li, S.-I. Niculescu, L. Dugard 
and J.-M. Dion. The problem of stabilization of time-delay systems with linear 
fractional uncertainty is studied using the linear matrix inequality techniques. 
Some specific problems are considered, in particular, the case of mixed state 
and input delays. The guaranteed cost control problem is ensured through the 
feasibility of LMIs. 

The fourteenth chapter entitled "Local Stabilization of Continuous Time- 
Delay Systems with Bounded Inputs" is written by S. Tarbouriech. The objective 
is to determine some domains of safe admissible states for which the stability of 
the saturated closed-loop system is guaranteed. The domains are obtained from 
an optimization linear program. Conditions are given in terms of solutions of 
finite dimensional algebraic Riccati equations. 

This book gathers a fairly wide number of approaches, methods and tools 
for the (robust) stability analysis and the (robust) stabilization of time-delay 
systems. It makes the state of the art in the field and provides the readers with 
implementation and numerical issues as well as worked examples. This book is 
then a valuable tool for the control community and for the engineer who wants to 
acquire both the basic notions on the subject and some more advanced stability 
and stabilization results. Each chapter contains its own notations and definitions, 
and is provided with a rich bibliography which allows the readers to examine 
thoroughly a particular point. 
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Abstract. In this chapter, some recent stability and robust stability re- 
sults on linear time-delay systems are outlined. The goal of this guided 
tour is to give (without entering the details) a wide overview of the state 
of the art of the techniques encountered in time-delay system stability 
problems. In particular, two specific stability problems with respect to 
delay (delay.independent and respectively delay-dependent) axe analyzed 
and some references where the reader can find more details and proofs 
are pointed out. The references list is not intended to give a complete 
literature survey, but rather to be a source for a more complete bibliog- 
raphy. In order to simplify the presentation several examples have been 
considered. 

1 I n t r o d u c t i o n  

1.1 Bas i c  ideas  

In the mathematical  description of a physical process, one generally assumes 
that  the behaviour of the considered process depends only on the present (in 
the usual sense) state, asumption which is verified for a large class of dynamical 
systems. 

However, there exist situations (for example, material or information trans- 
port) ,  where this assumption is not satisfied and the use of a "classical" model in 
systems analysis and design may lead to poor performance. Moreover, small de- 
lays may lead to destabilization [73]. In such cases, it is bet ter  to consider that  
the system's behaviour includes also information on the former states. These 
systems are called time-delay systems. 

* On leave from Laboratoire d'Automatique de Grenoble (France); Also with the De- 
partment of Automatic Control, University "Politehnica" Bucharest (Romania) 
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Following [110], the existence of a delay in a system model could have sev- 
eral causes, as, for example: the measure of a system variable, the physical na- 
ture of a system's composant or a signal transmission. A classification of de- 
lays with respect to the physical systems where they are encountered could be 
(see [93]): technological, transmission or information delay, respectively. With- 
out discussing these causes and classifications, natural questions arise: How to 
model? How to analyze the stability? or How to control such systems? 

Delay sys t ems  represen ta t ions  There are mainly three ways to model such 
systems: as evolutions in abstract spaces (infinite dimensional systems), as func- 
tional differential equations or as differential equations over a ring or module. 

Evolutions in abstract spaces In this case, the delay system class is embed- 
ded in a larger class of linear systems for which the evolution is described 
by appropriate (bounded or not bounded) Operators in infinite dimensional 
spaces [35, 36, 85] (see also [69] for a geometric theory or [44] for an operator 
theory framework). From a system theory point of view, this approach needs 
the introduction of appropriate concepts of stabilizability, observability, de- 
tectability, etc. Although this way is very general, the corresponding methods 
are not always easy to apply for specific problems. For further remarks and 
comments see also [13]. 

Functional differential equations In this case, we may have two different ways to 
consider a delay system, as evolutions in a finite-dimensional space [70, 93], 
or in a function space [70]. Some remarks on the effect of a delay on 
the boundedness, stability, continuation, integrability or oscillations can be 
found in [23]. From a system theory point of view, one can use classical 
concepts specific to "finite-dimensional" linear systems, or introduce "new" 
concepts more appropriate to a function space interpretation (see, for ex- 
ample, [111, 112, 159]). One of the possible advantages of such a modelling 
way lies in its facility to treat "infinite-dimensional" problems using "finite- 
dimensional" tools, with a trade-off to be paid on the conservatism of the 
obtained results. 

Differential equations over rings or modules In this case, we have interesting 
"structural" properties, as stabilizability and observability [86, 166, 51, 65, 
127]. In our opinion, these interpretations are better adapted for the cases 
when explicit information on the delay size is not needed. Further remarks, 
comparisons and examples can be found in [128, 161, 153]. 

Notice that, in some cases, classes of infinite-dimensional systems have nice rep- 
resentations (simpler) as functional differential equations (see, for example, Hale 
and Lunel [70] and the references therein). 

Each described way has some advantages or inconvenients depending on the 
considered problem to be handled. Thus, for example, if we are interested in 
the stabilization problem, it is of some interest to know whether or not a finite- 
dimensional controller is sufficient to stabilize a given delay system. 
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I n f i n i t e - d i m e n s i o n a l  v e r s u s  f i n i t e - d i m e n s i o n a l  Since the delay systems 
are in the infinite dimensional system class, we have two ways to analyze them, 
using tools specific to finite-dimensional systems: 

- F i n i t e - d i m e n s i o n a l  a p p r o x i m a t i o n s ,  as for example: Pad@ approximants 
[98], Fourier-Laguerre series [151] or optimal Hankel rational approximants 
[56]. Specific problems for such approximants are the choice of their di- 
mension and the stability [158, 64]. This approach will not be considered 
explicitly in this chapter. 

- F i n i t e - d i m e n s i o n a l  i n t e r p r e t a t i o n s .  As mentioned before (in the func- 
tional differential equation framework), a delay system can be described 
either as an evolution in a finite-dimensional space or in a function space. 
In each case and under appropriate assumptions, the considered "infinite- 
dimensional" problem may be "transformed" into a finite-dimensional one. 
It will be shown further how these transformations are done and what, in 
some cases, their restrictions may be. We do not claim here that the pro- 
posed approaches are the best, but emphasize that they are only alternative 
"ways" to analyze complex problems. Notice however that in some cases, the 
presented results are necessary and sufficient conditions. 

F u n c t i o n a l  d i f f e r e n t i a l  e q u a t i o n s .  A "shor t"  h i s t o r i c a l  p e r s p e c t i v e  The 
study of functional differential equations started long before 1900 (see the works 
of Bernoulli, Euler, Condorcet or Volterra), but the basics and the mathematical 
formulation were developed in the 20th century. Thus, the notion of a functional 
differential equation was introduced by Myshkis [129] in 1949 as a differential 
equation involvin9 the function "x(t)" and its derivatives not only in the ar- 
9ument 'St," (called time) but in several values of 'ft." Thus, a classification of 
such differential equations includes: retarded, and neutral equations with point 
or distributed delays. 

Without being exhaustive we cite some of the books which have marked 
the study of such systems (in the last 40 years) and which could be seen as 
basic works for this framework: Bellman and Cooke [12] (frequency based ap- 
proach, entire functions), Krasovskii [95] (time-domain approach, extension of 
the Lyapunov second method to functional differential equations), Halanay [67] 
(extension of the Popov theory to time-delay systems), R~svan [154] (absolute 
stability of time-delay systems), Lakshmikantam and Leela i97] (differential in- 
equalities and comparison theorems), Burton [23] (refinements of the Lyapunov- 
Krasovskii theory and periodic solutions), Kolmanovskii and Nosov [93] (a good 
introduction to the stability of functional differential equations and a lot of ex- 
amples) or Diekman et al. [44] ("small" solutions, operator theory approach). 
Some recent comprehensive introductions are G6reeki, Fuksa, Gabrowski and 
Korytowski [60], Marshall et ai. [118], Kolmanovskii and Myshkis [94] and Hale 
and Lunel [70]. The first volume of Bensoussan et al. [13] presents a detailed 
account of the product space approach, and the construction of the structural 
operators. 
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Delay as a p a r a m e t e r  In the sequel, we consider a class of time-delay systems 
described by linear delay-differential equations including "point delays". The de- 
lays are seen as parameters of the system, and we are interested in analyzing 
the stability property with respect to them. The idea is to give characteriza- 
tions of the stability regions for linear systems with delayed state in terms of 
delays. To the best authors' knowledge, this problem is still open (see [44] and 
the references therein), but in some cases, complete characterizations can be 
given. In this sense, two notions of stability are introduced: delay-independent 
and delay-dependent stability, respectively. The time-varying as well as the mul- 
tiple delays cases are also considered, using some appropriate delay-independent 
/ delay-dependent notions. Several examples including the scalar case are also 
presented. 

Nota t ions  The following notations will be used throughout the chapter. IR (@) 
denotes the set of real (complex) numbers, JR* = I R -  {0}, ©* = @ - {0}, C(0, 1) 
denotes the unit circle in the complex plane. For a complex number z E @, 
2 denotes its complex conjugate. ]R + is the set of non-negative real numbers, 
j]R denotes the imaginary axis of the complex plane, j]R* = jlR - {0}, ]Rn 
denotes the n dimensional Euclidean space, and 11% n×'~ (@nxm) denotes the set 
of all n × m real (complex) matrices. A(M) represents the set of eigenvatues 
(spectrum) of the complex matrix M 6 @,~×n. diag(A, B) denotes the matrix 

[ A  0 ]  w h e r e t h e z e r o b l ° c k s h a v e a p p r ° p r i a t e d i m e n s i ° n s f ° r t h e m a t r i c e s 0  B ' 

A 6 ©re,×n1, B E @m~×n2. @+ (@-) denotes the open right (left) half com- 
plex plan. In(M) = (r(M),  v(M), 6(M)) is the inertia of the complex matrix 
M 6 @,×n where It(M), v(M) and (~(M) denote the number of eigenvalues 
with negative (¢~-), positive (C, +) and zero real parts (fiR). #(A) with A 6 

11% ~×n denotes the matrix measure of A given by: #(A) = lira Ill~ + hAlt - 1 
h~O+ h 

C,.T = C([--T, 0], IR '~) denotes the Banach space of continuous vector functions 
mapping the interval [--T, 0] into IR ~ with the topology of uniform convergence. 
The following norms will be used: It ' I] refers to the Euclidean vector norm; 
11 ¢ Hc = sup I1 ¢(t) II stands for the norm of a function ¢ E C~,T. Moreover, 

-r<_t<_o 
we denote by Cvn,r the set defined by Curt = {¢ E Cn,r :11 ~ tic< V}, where v is 
a positive real number. 

1.2 Linear  delay systems class 

In this chapter, a linear time-delay system is described by a functional differential 
equation of the form: 

n d  

&(t) = Ax(t) + ~ Adix( t -  v~), (1.1) 
i=1 
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with an appropriate initial condition of the form (if the delays are supposed to 
be constant): 

x(to+O) = ¢(~), 8 E [ - ~ , 0 ] ,  ~ =  maxr i ,  ( t0,¢)E]R+xC~,T(1.2)  
i=l,nd 

For such systems, one may associate a triplet Z of the form Z = (A, Aa, r), 
where: 

Ad = [Adl, . . . ,  A~n~], 
= 

which allows the description of the considered system in the parameter space 
(A and Ad correspond to the present and respectively, former state). Through- 
out this chapter, E asymptotically stable means that the system (1.1)-(1.2) is 
asymptotically stable. 

The case nd= 1 is known as the single delay case. For nd >_ 2, we shall also 
consider the delay parameter space ( T I , . .  • Tn~i) E ]R rid. If one has multiple delays 
(rid >_ 2), we may have a particular situation - -  the commensurable case (i.e. 
there exists a delay value r, such that all the delays ri are rational "multipliers" 
of r). We shall see later that there are some similarities between this case and 
the single delay case. 

Further specifications are given when the delays are continuous (or piecewise 
continuous) time-varying, but bounded functions. Thus, for the single delay case, 
we may have two different situations: 

- continuous (or piecewise continuous) bounded time-varying delay function 
r : ]R + ~4 1R, T(t) < ~ for any t E JR+; in this case, the initial condition 
(1.2) becomes: 

x(to+8) = ¢(e), 0 e $,o, (1.3) 

where ¢ : ~to ~ ]Rn is a continuous and bounded vector-valued function and 
the definition domain St0 is given by: 

£to = {t e JR: t = r / -  r(~) < to,~ _> 0} .  (1.4) 

- continuous with bounded derivatives time-varying delay function, i.e. one 
needs the following natural supplementary condition: 

• (t) _< ~ < 1. (1.5) 

U n c e r t a i n  l inear delay sys t ems  As written in [206], "the term uncertainty 
refers to the differences or errors between models and reality." In this chapter we 
consider either, only parameter uncertainty, i.e. when the parameters (A, An) of 
the system are not well known, or parameter and delay time uncertainty, when 
(A, An, T) are imprecise. 

In this context, an uncertain linear delay system can be defined as a triplet 
(~,  D, ~), where 



6 A Guided Tour 

- S is the nominal system (free of uncertainties), i.e. the triplet (A, Ad, ~) and 
- the pair (D, ¢~) describes the uncertainty, where 79 is the perturbation set, 

i.e. a domain in which the uncertainty (physical parameters in our case) is 
known to lie and • is a mapping taking values from 7) which describes the 
way the uncertainty "acts" on the system's parameters. 

This description allows a general framework for robustness stability issues. Notice 
that this definition is more general than the cases treated here, but we do not 
intend to review all the robustness problems in this framework. 

We shall give also some classifications of delay systems involving parameter 
uncertainty. Notice that we make a distinction between the delay as a parameter 
and the others parameters (the pair (A, Ad)) of the systems. This aspect will be 
clarified next. 

1.3 De lay - independen t  versus de lay -dependen t  s tabi l i ty  

In order to better fix the notions that will be used in this chapter, we consider 
the following two different cases (some stability notions and general results can 
be found in Appendix): 

Single delay Following Mori [123], we have two different kinds of asymptotic 
stability for systems of the form (1.1)-(1.2), depending on the information on 
the delay size in the property: 

- De lay- independen t ,  i.e. the property holds for all positive (and finite) 
values of the delays. Hence this automatically implies robustness with respect 
to the delay time. 

- Delay-dependen t ,  i.e. the stability is preserved for some values of delays 
and the system is unstable for other values. 

If the delay-independent notion is clear, the delay-dependent case has to be bet- 
ter specified. For the sake of simplicity and in order to have no ambiguity, we 
introduce the following assumption: 

A s s u m p t i o n  1 The system (1.1)-(1.2) free of delay (r =_ O) is asymptotically 
stable. 

With this assumption, we shall say that the system is delay-dependent stable, 
if it satisfies Assumption 1 and is unstable for some values of r > 0. It is easy to 
see that these notions are complementary one to the other. Thus, the problem 
considered here is of the form: 

P r o b l e m  1 Determine if a delay system of the form (1.1)-(1.2) satisfying As- 
sumption 1 is delay-independent asymptotically stable or not. If  not, find an 
optimal (sub-optimal) bound on the delay size which still ensures the stability 
property. 
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Notice that we only consider here, in the delay-dependent case, the interval 
containing T = 0, i.e. of the form [0, T*), independently of possible other intervals 
(for general "delay-intervals" of the form (_v, ~), with Z > 0 see also [144]). 

Remark 1. A natural question arises here: Is the considered problem well posed 
or not? Indeed, the system free of delay is finite-dimensional and the associated 
characteristic equation has a finite number of eigenvalues in the complex plane. 
The system with delayed state is an infinite-dimensional one and its character- 
istic equation has an infinite number of eigenvalues [165]. The answer is positive 
and we shall see later why. 

For the time-varying delay case, delay-independent stability means that 
the stability property holds for any continuous (or piece-wise continuous) and 
bounded time-varying delay function, with any positive and finite bound in the 
specified class. The delay-dependent case could be defined by analogy. 

Mul t ip le  delays The delay-independent and delay-dependent stability notions 
can be easily extended to this case, by taking into account the behaviour with 
respect to each delay. We have a particular "mixed" case, which could be called 
delay-independent / delay-dependent: delay-dependent stability in one delay (or 
several) and delay-independent stability in others (at least one) and all the pos- 
sible combinations. 

If the problem is posed in the delay-parameter space, it is clear that we may 
have two different delays sets: 

U n b o u n d e d  sets including the delays-independent and delay-independent / 
delay-dependent cases; 

B o u n d e d  sets including only the delays-dependent case. 

In conclusion, if a system is not delays-independent stable, two situations may 
occur: there exists at least one delay in which the system is delay-independent, 
and delay-dependent in all the others (the so-called "mixed" case in the un- 
bounded sets class), or the stability is of delay-dependent type in each delay (the 
bounded sets class). Using the same formalism as in the single delay case, we 
can consider the following problem: 

P r o b l e m  2 Determine i] a delay system o] the/orm (1.1)-(1.2) satisfying As- 
sumption I is delays-independent asymptotically stable or not. I] not, find an 
optimal (sub-optimal, convex or not) region in the delay-parameter space which 
still ensures the stability property. 

If the delays are commensurable, we have the same delay-independent and 
delay-dependent notions as in the single delay case. 

The time-varying delay cases can be defined similarly to the single delay 
case, taking into account that the delay-parameter space is not Euclidian, but a 
function space. In order to simplify the presentation, this case is not explicitly 
treated here, but it will be mentioned when some proposed results also hold in 
this situation. 
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R o b u s t n e s s  issues The "delay-independent / delay-dependent" problems de- 
fined previously could be seen as robustness problems with respect to delays. The 
problem becomes more difficult if in addition there is uncertainty in (A, Ad). In 
this case we shall use an uncertain system representation of the form ~r = 
(Z, 7), 4) instead of the triplet E form, and all the "delay-independent / delay- 
dependent" notions, concepts and problems can be defined by similarity. For the 
sake of simplicity, we do not detail all them here. 

In order to distinguish between all the considered cases, we have used the 
terms "delay-independent / delay-dependent" for stability analysis of ~ and the 
"robust delay-independent / robust-delay dependent" for the case (~,  l), 4). 

The term "robust" is associated to the fact that the considered property holds 
for any admissible uncertainty in the form (T), 4). Also if we have time-varying 
uncertainity we should use the "uniform asymptotic" stability concept instead of 
the "asymptotic" one. Notice that, for the linear system with constant param- 
eters and without uncertainty, the notions of asymptotic, uniform asymptotic 
and exponential stability are equivalent (see [93] and the references therein). 
Only the uniform asymptotic and exponential stability notions for functional 
differential equations (of retarded type) are given in the appendix. 

For example, for an uncertain system (Z, 7), 4) with a single delay T, we shall 
say that the system is robustly delay-independent stable if the trivial solution of 
the associated functional differential equation is uniformly asymptotically stable 
for all positive values of ~- and all the admissible uncertainties in the (7), 4) form. 
Thus, we consider implicitely that the uncertain system free of delay is robustly 
stable 4 The associated problem can be formulated as follows: 

P r o b l e m  3 Determine if a delay system of the form (Z, D, 4) satisfying As- 
sumption 1 is robustly delay-independent stable or not. If not, find an optimal 
(sub-optimal) bound on the delay size which still ensures the stability property. 

Stochastic pe r tu rba t i ons  Another aspect of robustness is the sensitivity of 
the stability against stochastic perturbations. Stochastic models are useful when 
the perturbations are not directly measurable (and predictable) and fluctuate 
with time. With additive noise, an otherwise stable equilibrium is no longer an 
equilibrium solution. However there may be interest in determining the existence 
of a stable distribution. If the noise is state dependent (one often refers to such 
models as bilinear models), the deterministic equilibrium may also be a stochas- 
tic equilibrium state. In this case one may want to investigate the stochastic 
stability of this equilibrium. There are very many details and since we shall not 
consider stochastic issues in this book, we limit the citation to a few references. 
A starting point to study aspects of stochastic delay systems is the monograph 
by Mohammed [121] and the volumes by Mao [113~ 115]. The stochastic stabil- 
ity of the equilibrium solution of stochastic delay equations has been studied, 

4 Due to the framework presented here, we have not considered the cases in which the 
¢ielay term may induce robust stability if the system free of delay does not satisfy 
this property. 
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for various notions of stablity, by Mao [114] (asymptotic stability in probability, 
moment stability and exponential stability), Mohammed [122] (moment stabil- 
ity) and Nechayava and Khusainov [130] (exponential stability). An approach 
extending the Riccati equation criterion discussed in this book can be found in 
[52, 183, 184, 187]. 

1.4 P u r p o s e  o f  t h e  c h a p t e r  

In this chapter, some frequency and time-domain methods for analyzing stability 
of linear delay systems are presented and their advantages and disadvantages 
illustrated. The intention of the authors is twofold. 

Firstly, we want to introduce the stability analysis for time-delay systems and 
help the reader to understand some of the issues treated in the next chapters 
dedicated to similar topics. In this sense, we intend to present a specific prob- 
lem arising in the stability analysis of such systems: how robust is the system 
stability with respect to the delay term, and thus, to give a characterization of 
stability properties in terms of delays. We have also considered the robustness 
analysis with respect to the other parameters of the system, i.e. uncertainty in 
the "present" and "delayed" matrices (A respectively Ad). 

Secondly, we want to give a (non-exhaustive) guided tour of the existing 
results in the literature and present some interesting results obtained in the 
control literature on the proposed topics. 

In order to simplify the presentation, we considered it necessary to include 
some simple examples for which the stability results are well known. In some 
cases, they illustrate the conservativeness of the existing results with respect to 
necessary and sufficient conditions. Note however that in general, such conclu- 
sions are difficult to draw. Also, we do not give complete proofs, but only some 
ideas of the presented results. 

1.5 O u t l i n e  

The chapter is organized as follows: two examples from the control literature 
are given in Section 2 in order to motivate the considered "delay-independent 
- delay-dependent" framework. In section 3, we introduce appropriate stability 
sets related to the considered concepts. Section 4 is dedicated to the frequency 
domain approach and related techniques. The time-domain approach including 
the Lyapunov methods and the comparison principles is presented in Section 5. 
Other stability results using different frameworks are given in Section 6. The 
robustness issues and related analysis techniques are given in Section 7. The 
examples given in Section 2 are reconsidered in Section 8 in order to present 
some applications of the techniques considered in this chapter. Some conclud- 
ing remarks end the chapter. A short appendix includes some basic notions on 
functional differential equations stability concepts and results (the Lyapunov- 
Krasovskii and Razumikhin theorems). 
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2 E x a m p l e s  

In this section, some examples from the control literature are developed in order 
to show where one may encounter delay-independent and delay-dependent sta- 
bility properties respectively. The detailed examples (chemical industry, neural 
network) are reconsidered later, when some of the techniques presented in this 
chapter are used to prove the corresponding stability results. 

2.1 Chemical  Indus t ry  

Consider a first order, exothermic, irreversible reaction: A ~-~ B [102] [103]. 
Since, in practice, the conversion from A to B is not complete, one classical tech- 
nique uses a recycle stream (which increases overall conversion, reduces costs of 
the reaction, etc.). In order to recycle, the output must be separated from the 
input and must flow through some length of pipe. This process does not take 
place "instantaneously"; it requires some "transport" time from the output to 
the input, and thus one may consider a system model involving a transport delay. 

Suppose now that the unreacted A has a recycle flow rate (1 - )`)q and ~- is 
the transport delay. Then the material and energy balances are described by a 
dynamical system, including delayed states of the form: 

l 
~ = q [)`Ao + (1 - )`)A(t - v) - A(t)] - Koe-~ A(t) 

dT(t) 1 AH 
dt ........ V [),To + (1 - )`)T(t - T) - T(t)] -~p  - Koe- d(t) (2.1) 

pU(T(t) - Tv~) 

where A(t) is the concentration of the component A, T(t) is the temperature 
and )` is the recycle coefficient, which satisfies the conditions: A 6 [0, 1]. The 
limits 1 and 0 correspond to no recycle stream and to a complete recycle, re- 
spectively. The case when we have no delay in the recycle stream (~- = 0) has 
been completely treated in [152] (see also [15]). 

For such a system, it is proved that if the steady states of the system without 
delay is locally asymptotically stable, then this property holds also for the system 
(2.1) and furthermore the local stability is of delay-independent type [102], [103]. 

We shall see later that this property holds also if we suppose to have a time- 
varying delay instead of a constant one. 

2.2 Neura l  Ne tworks  

In a continuous (so called analog) neural Hopfield network [79], the state of each 
'unit' is described by a voltage ui on the input of the ith neuron, and each 
neuron is characterized by an input capacitance Ci and a transfer function fi. 
For describing the connections between the neurons, one uses the connection 

matrix T, whose elements are of the form - ~  (or l_l_)Rij when the noninverting 
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(inverting) output of the unit j is connected to the input of the unit i through 
a resistance Rij.  

Suppose that all the units are identical: Ci = C, fi = f ,  Ri = R and that 
there exists a delay (due, for example, to the implementation the network using 
VLSI), then the following model (see also [9, 116, 200]): 

n 

~i(t) = - x i ( t )  + ~ a i j f [ x j ( t  - T)], I < i < n. (2.2) 
j=l 

gives a good description of the system's behaviour. 
The associative memory, one of the oldest applications of neural networks, 

consists in the capacity of the system to stock ("register") information which 
could be recovered not via an address as in a classical memory, but giving data 
(not necessarily a complete information) with respect to the informations reg- 
istered (see also [92]). This notion is related to the stability property of the 
associated dynamical system. 

In this context, it is important to know what is the effect of delay on the 
system's stability property. In general, it is supposed that the linearized system 
without delay is locally asymptotically stable. 

For this model, using a frequency based approach (for the linearized equa- 
tion), two different situations may occur: delay-independent stability or delay- 
induced instability [9, 10]. If the first notion was clearly stated in the previous 
section, the second one states the fact that the stability property is not satisfied 
for all values of the delay size, but only for an interval of the form [13, ~-*). Thus, 
this notion is identical to the delay-dependent notion stated before. 

This example, as well as the chemical reaction presented before are com- 
pletely analyzed later. 

2.3 Othe r  examples  

A lot of various engineering processes (robotics, machine tool vibrations) includ- 
ing delays are given in [93, 110] (and the references therein). 

Another representative area is in the control of flexible structure. In fact, in 
this case a delay may occur in measuring the structural response and in applying 
the considered active control. The effect of such delays as well as comments and 
references can be found in [164, 41]. 

In all the examples considered before, the delay effect is a destabilizing one 
(see also [50] for the case of contact stability of position controllers). However, 
there exist some cases when the existence of a delay term may improve the 
stability properties [1]; Indeed, consider an oscillating system of the form: 

i j(t)  = u( t ) ,  •o 

It is easy to see that there does not exist any stabilizing output feedback of the 
form u(t) = ky(t), k E lR, but the closed-loop system is asymptotically stable 
for u(t) = ky(t  - T), for some real k and r > 0. 
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The engineering field is not the only source of delay systems examples. No- 
tice that the last decade has witnessed important advances on modelling physi- 
ological, ecological [59], population dynamics [96] or biomedical [109] dynamical 
systems using delay in their representation. 

In this sense, models of the form: 

{ ~l(t) = - a ~ ( t )  - / ~ ( ~ ( t  - T~), ~ ( t  - T~)) 
22(t) -a2x2(t)- f2(xl(t r2),x2(t "r2)) 

(2.3) 

(similar to the neural network example) are used in the study of protein hormone 
regulation (see also [25] and the references therein) and of population dynamics 
(see [165]). 

From historical point of view, the first engineering studies of such dynamical 
systems involving delayed states started in the 30s (see the paper of Callender 
and Stevenson, or the 'Editorial' paper of the review 'Engineering' mentioned in 
R~svan [154] or in Kolmanovskii and Nosov [93]). 

3 Stability sets in parameter space 

It was mentioned in the previous section that the commensurable delays case 
could be treated in a similar manner to the single delay case. In order to give 
a unitary presentation, we directly treat the commensurable delays case (with 
constant delays) and we shall see that this one allows a complete recovery of the 
single delay case. 

Thus, throughout this section, the triplet ~ = ( A, Ad,T)  which describes 
the delay system (1.1)-(1.2) further satisfies the condition (via an appropriate 
permutation): 

{ ~ = [~1. . .~ .~]  (3.1) 
T k = kTo, Vk = 1,ha 

Introduce the set: 

S(r) = {(A, Ad) : S asymptotically stable at T = r} (3.2) 

It is easy to see that for r = 0, S(0) becomes: 

$(0) = A, Ad) : A +  Ak 
k = l  

is Hurwitz stable}, 

In conclusion, a pair (A, Ad) satisfies Assumption 1 if and only if (A, Ad) E S(O). 
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3.1 O n  the  cont inui ty  p rope r t i e s  

In order to see if the problem 1 is well-posed, let us consider the sets $(0) and 
S(¢), with e a sufficiently small positive number. 

Consider the characteristic equation associated with (1.1)-(1.2): 

det sin - A -  Ake -skr° = 0, (3.3) 
k = l  

which is a transcendental equation [47] for TO > 0 and has an infinite number of 
solutions. Some results concerning the location of the roots of the transcendental 
equation (3.3) relatively to the imaginary axis can be found in [12, 44] (and the 
references therein). These roots have some interesting properties: the number 
of eigenvalues with - a  (a > 0, arbitrary) real part in the complex plane C 
is always finite and - c o  is an accumulation point (i.e. there exists an infinite 
subsequence of roots {Ai}, such that tim Re(Ai) = -co) .  Notice however that 

i--~oo 
this result is not true for general functional diffrential equations. Other remarks 
and comments can be found, for example [165] and the references therein. 

Introduce now the "quantities": 

od } det( ' A Ade kh/=0 
lh = min  Re(A) > O : det )~In - A - Ade -xkh = 0  

k= l  

with Uh = --co and lh = +co if the corresponding sets are empty ("u " for 
upper and 'T' for lower). It is clear that these quantities give the real parts 
of the corresponding eigenvalues (if there exists any for lh) "closest" to the 
imaginary axis j]R. Using a Datko's type argument [39], the numbers Uh and lh 
continuously depend on h, on all the entries of the matrices A and Ak (k = 1--,~), 
it follows that: 

P r o p o s i t i o n  1 [133] Consider the system (1.1)-(1.2) satisfying Assumption 1. 
Then the following properties hold: 

1. I f  (A, Ad) E S(O), then there exists an ~ > 0 su1~ieiently small such that 
(A, Ad) e S(h)  for all h e [0,e]. 

2. I f  (A, Ad) E S(O), and if there exists a vl for which the triple (A, Ad,T1) is 
not stable, then there exists an ~, 0 < c < ~'1, such that (A, Ad) E S(h)  for 
all h E [0,c) and]or h = ~ the characteristic equation (3.3) has roots on the 
imaginary axis. 

This proposition can be seen as the continuity stability property for system 
"free" or "not" of delay. Notice that the part 1 of this proposition is more general 
and holds also for time-varying delays or for several delays [133]. In this sense 
one could use a Lyapunov second method type argument to prove it. We shall 
see these cases later. 
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Remark2. Instead of the stability property, we could use the hyperbolicity one 
(i.e. no eigenvalues on the imaginary axis) with associated "delay-independent 
/ delay-dependent" notions [143]. Furthermore, the proposition still holds in a 
"delay-interval" setup, i.e. if some property (stability or hyperbolicity) holds for 
a given value T~ > 0, then there exists a delay-interval including this value such 
that the considered property is still satisfied and at for (at least one of) the delay 
margins, we have some eigenvalues on the imaginary axis. 

3.2 Definitions and related remarks  

We have the following definitions: 

Defini t ion I De lay- independen t  set.  [133] The set S~  defined by 

$ ~  = {(A, Ad) : ,~ asymptotically stable Vvo >_ O} (3.5) 

is called the delay-independent stability set in the parameter space (A, An). 
If a triplet Z satisfies the condition (A, Ad) E S~,  we shall say that the 

triplet is Sc~ stable.. 

Def ini t ion 2 De lay -dependen t  set.  [133] The set Sr defined by 

$~ = {(A, Ad) : ~ asymptotically stable Vr0 E [0,7") 

and unstable for Vo = r*} (3.6) 

is called the delay-dependent stability set in the parameter space (A, Ad). 
If a triplet Z satisfies the condition (A, Ad) E St, we shall say that the triplet 

is Sr stable. 

Using the stability set 8(r) definition, one has the following natural result: 

Proposit ion 2 [133] The following assertions hold: 

I. S~  = n r ~ + S ( r ) .  
z.  s r  = s ( o )  - s ~ .  

Using the definitions given here, we have a simple algebraic equivalent for- 
mulation of Problem 1 for the commensurable (constant) delays case: 

P r o b l e m  4 Determine the maximal cone included in all S(r) where r is real 
and positive. Furtheremore, if a triplet (A, Ad,r) satisfying (3.1) is ST stable, 
then find an optimal (sub-optimal) bound r*. 

Suboptimality indicates that the considered method guarantees the stability 
for all T E [0, V*], but there is no information on the behaviour of the system for 
~- > T*. Although the "suboptimal" notion seems to be quite conservative, we 
emphasize that the proposed bounds are the "maximal allowable" ones within 
the corresponding framework. Several comments are given later for each case 
analyzed. 
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If the delay is time-varying, the stability notions are similar with Sv,~ (or 
Sv,;~,~) and S~,r (or Sv,a,~) respectively. Thus: 

Sv(r) = {(A, Ad) : S uniformly asymptotically stable at 

v e V(r)} (3.7) 

and 

where 

Sv,~ = {(A, Ad) : S uniformly asymptotically stable 

Yr > 0 and Y~- E 12(r)}, (3.8) 

V(r) = { ; e C  o : Vte +}. 

It is clear that S~ (0) = S(0). The other cases can be defined by similarity. The 
following result is an extension of Proposition 2: 

P ropos i t ion  3 [133] The following assertions hold: 

1.8v,oo = n~em+S~(r). 

e sv,r = s(0) - sv,  

For example, consider now only the robust "delay-independent / delay-depen- 
dent" notions for a system with a single delay T including uncertainty in the 
matrices A and Ad. The definitions l and 2 become: 

Definition 3 Robust delay-independent set. The set Srobust,~ defined by 

8 r o b u s t , c ¢  - "  {(A, Ad) : (~E', 79, ~) uniformly asymptotically stable 

VT > 0 and all admissible uncertainty (79, d~)} (3.9) 

is called the robust delay-independent stability set in the parameter space (A, Ad). 
If a triplet (S, 79, ~) satisfies the condition (A, Aa) E S~ob,~t,oo, we shall say 

that the associated uncertain delay system is $~obust,~ stable. 

Defini t ion 4 Robus t  de lay -dependen t  set. The set Srob~,st,~- defined by 

Srobust,r = {(A, Ad) : (S, 79, ~) uniformly asymptotically stable 

k/~- E [0, 7-*) and for all admissible uncertainty (79, ~) 

and unstable for ~" = T* and some admissible (79, ~)}(3.10) 

is called the robust delay-dependent stability set in the parameter space (A, Ad). 
If a triplet (S,79, ~) satisfies the condition (A, Ad) E S~obust,r, we shall say 

that the associated uncertain delay system is Srob~,~t,r stable. 

These definitions recover the case when we have no parameter uncertainty in 
the matrices (A, Ad). To the best of the authors' knowledge, a complete char- 
acterizations of these sets does not exist. We shall present later some sufficient 
and some necessary conditions ensuring that a pair (A, Ad) belongs to such sets 
for a given representation of the uncertainty (79, ~). 
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3.3 Scalar  s ingle de lay  case 

Let us consider now the following simple example: 

:/:(t) = - a x ( t )  - bx ( t  - r )  

(a, b, T) E ]R x IR x IR + ' (3.11) 

under appropriate initial conditions (1.2), which will be used throughout this 
chapter to illustrate the various analysis techniques. 

F r e q u e n c y - d o m a i n  approac l f fhe  characteristic equation associated to 
(3.11) is: 

s + a + b e  -8~ = 0. (3.12) 

This is a t ranscenden ta l  equat ion having an in f in i te  number of solutions. As 
specified before, the analysis of such a system is done in the parameter space 
(a, b). 

Use of the I ) - d e c o m p o s i t i o n  me thod  [93] gives a parametrization of the space 
0ab in several regions, each region being characterized by the same number of 
roots with positive real parts (see also [47]). Furthermore, each region is bounded 
by a "hypersurface" (here a first order one), which has the property that  at 
least one root of the characteristic equation lies on the imaginary axis for the 
corresponding parameters a, b and r.  

The "methodology" to be used is as follows: first, we find the "hypersurfaces" 
by taking s = j w  in (3.12), and second, for each region we consider one point for 
which the analysis of the corresponding characteristic equation is more simple. 

In our case, we have two "hypersurfaces': 

a + b  = 0, (3.13) 

which corresponds to the solution s = 0, and: 

a + boos(car) = 0 
ca - b s i n ( w r )  = 0 ' ca ¢ 0. (3.14) 

Thus, $(r) is the Oab region, whose boundaries are parametrized by (3.13)- 
(3.14), for r = r. (Indeed, we can consider b = 0, and the system 2 = - a x ,  

a > 0 is stable, etc.). 
The de lay- independent  stability region problem, which corresponds to the 

intersection of all S(r),  r > 0 (constant, but finite), can be seen as f i nd ing  all a 

and b, for which: 

a + b > 0  

the system 
a + bcos (wr)  = 0 

ca - b s i n ( w r )  = 0 ' 
has no solution for ca ¢ O. 
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b 
/ 

Fig. 1. Scalar single delay case. Stability regions in the parameter space Oab 

Simple computations prove that the corresponding set (depicted in Fig. 1) is 
given by: 

( ( a , b ) :  a+b>O,a lbl}. (3.15) 

Since Sr and S~  are complementary with respect to S(0), it follows that: 

= {(a,b)  : b > l a l } .  (3.16) 

The only problem here is to find the optimal corresponding bound ~'*. One way 
to compute it, is to consider the characteristic equation (3.12) as an equation in 
two variables: one real (w E lR*), and the other on the unit circle (z E C(0, 1)) 
and to find: 

: j w + a + b z = O ,  z = e  - ~  . 

Notice that the above set is always nonempty if b >1 a I. 
The idea of using two variables for studying such stability problems is 

not new~ and it has been used for the delay-independent stability problem 
in [87, 88, 71, 74, 75] (and the references therein). We shall talk later about 
the corresponding techniques. 

Remark 3. Another method to compute this bound has been given in [47] using 
Rouch~'s theorem for complex functions. Another idea has been given in [17] (see 
also [16]), where the parameter space regions are bounded by "hypersurfaces" 
defined by the discontinuities of the function 7(a, b). 

In conclusion, we have the following result: 

P ropos i t ion  4 The following assertions hold: 

1) The triplet ( -a ,  -b, r) is S ~  stable if and only if a + b > 0 and a >-I b 1. 
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2) The triplet ( - a , - b , T )  is Sr stable if and only {] b >[ a I. 
The corresponding optimal bound is given by: 

arccos - -  

7-* . . . .  . (3 .17)  
V / ~ - -  a 2 

Furthermore, there do not exist other stability regions. 

~r 
It is easy to see that  if a = 0, then the optimal bound 7-* becomes 7-* = - -  

2b" 
This case (a = 0) is analyzed in the next section using a time-domain approach. 

T i m e - d o m a i n  A p p r o a c h  a n d  R a z u m i k h i n  T h e o r e m  This part is devoted 
to the introduction (via an example) of two notions largely used in the litera- 
ture to develop stability results: Lyapunov-Krasovskii functional and Lyapunov- 
Tlazumikhin function. 

Whereas the notion of a Lyapunov functional may seem like an obvious choice 
to extend the "classical" stability analysis in the sense of Lyapunov for ordinary 
differential equation to the infinite dimensional case, the notion of Lyapunov- 
Razumikhin is not so clear. In the latter one uses a "finite-dimensional" tool 
for an "infinite-dimensional" problem. It was mentioned in the Introduction 
that  one can also interpret a functional differential equation as an evolution 
in an Euclidian space. Now the Lyapunov-Razumikhin function can be seen as 
the "result" of this interpretation. The main idea of the corresponding stability 
result (see the appendix for the exact formulation) can be summarized as follows: 
In the case of a Lyapunov-Krasovskii functional, V, a sufficient condition for 
stability is that  the derivative, 1), of the candidate functional be negative along 
all the system's trajectories. In the Razumikhin based approach [155, 120] the 
negativity of the derivative of the Lyapunov-Razumikhin function V : ]R ~ ~-~ ]R 
is only  required for the trajectories which leave at t + a certain set, defined by 
the system evolution on the interval [t - T, t] (see also the appendix for the 
formulation). Other remarks on such an approach can be found in [95, 70]. To 
the best authors'  knowledge, one of the first applications of Razumikhin theory 
in control is due to Thowsen [173]. 

Consider now the scalar case, with a = 0 and with a continuous, but bounded 
time-varying delay 7"(t). 

Recalling that  V(r) = { r e C  O : 0_<r(t)  < r ,  V t e ] R  +}, the following 
holds: 

P r o p o s i t i o n  5 The triplet (0,--b,T(t)) (see (3.11) with a = O) where T e V(r),  
is delay-dependent uniformly asymptotically stable if for all t 

1 (3.18) 7-(0 <- r < 

Furthermore, the result holds if b is a continuous time-dependent function b : 
1 1 

lR ~-r ]R + and -~ is replaced by suptela b(t) " 



Time-delay Systems 19 

Sketch of the pro@ Use the Lyapunov-Razumikhin function: 

x(t)2 (3.19) V(x(t))  = 2 ' 

for the functional differential equation: 

f 
T 

~(t) = -bx( t )  + b 2 x(t  + O)dO, (3.20) 
2 r  

(given here for b scalar) obtained from the original system by using the Leibniz- 
Newton formula. For simplicity of the presentation, let us focus on the case when 
all terms are constant. Other comments and remarks can be found in [133, 70]. 

The derivative of the function (3.19) along the trajectories (3.20) is: 

F 
T 

?(z ( t ) )  = -bx( t )  2 + b2x(t) x(t + O)dO. 
2 r  

Consider now V(x(~)) < q2V(x(t)),  t -  27" < ~ < t. It follows that the derivative 
(z(x(t)) is bounded by: 

(Z(x(t)) < -b(1 - bqr)x(t) 2. (3.21) 

Thus, bT < 1, implies the existence of a q > 1 (sufficiently small) such that 
bqr < 1, and the stability result follows from Razumikhin theorem. 

Remark4.  We have seen that for a constant delay, the optimal bound on the 
delay size is given by: T* 7r = ~ .  However, this bound is not the optimal one if 

delay is time-varying. In fact, if r(t) <_ ~b there exist oscillating solutions the 

(see [70, 201] and the references therein). 
Using a different time-domain approach, Barnea [7] (see also [70]) has ira- 

3 
proved the stability bound in the case of constant T, to T < ~-~. 

Consider now the general case, 

~ ( t )  = - a x ( t )  - b~(t  - T(t)) ,  a + b > 0, r e V(r )  (r > 0).  

Using the same ideas, we have: 

P ropos i t i on  6 The following assertions hold: 

1. The triplet ( - a , - b , r ( t ) ) ,  with r E l;(r) is S~,o~ stable ira  >t b I. 
2. I f  b > I a I, the triplet ( -a ,  -b, r(t)) is Sv,r stable, and the stability is guar- 

anteed for  any T E l;(r*), where: 

a + b  
r* = (3.22) 

b2 + l ab I" 



20 A Guided Tour 

Remark 5. The assertions in Proposition 6 still hold if b is a continuous time- 
varying bounded function b(t) instead of a constant one. For example, the Sv,~ 
stability is then reduced to test if a > sup ] b(t) I instead of a >1 b I and r* is 

tEIR 
given by: 

a+_b 
r* 

b2+]a]b  ' 

{ b = supb(t) 
LEIR 

b = i n f b ( t )  ' 
- tEIR 

if b(t) > O, a + b(t) > O, Vt E IR. 

Other remarks and comments on the set Sv,~ are given in [5]. 

Let us consider now the delay-independent case when the delay is constant. 
Another way to obtain the sufficient condition a >I b ] close to a necessary 
and sufficient one (see Proposition 4), is to consider the Lyapunov-Krasovskii 
functional: 

V(xt)  = z(t) 2 + ~ x(t  +tg)2dO. (3.23) 
T 

The advantage of such functionals is the "decoupling" between the "present" 
state x(t) and the "previous" ones xt(O), ~ e f - r ,  0). Notice that  this functional 
can also be interpreted as a function on the space product ]R n x Cnv,~. 

For the stability problem, simple computations prove that: 

V(xt) <_ - ( a -  ] b ])x(t) 2, 

which is stricly negative for x ~ 0 if a >] b l- In this case, the delay-independent 
stability condition follows from the Lyapunov-Krasovskii stability theorem (see 
also the Appendix). 

For a = b > 0 the considered Lyapunov-Krasovskii functional ensures only 
uniform stability and not uniform asymptotic stability. A method to prove this 
last property is to use an extension of Lasalle's principle (see [70] and the ref- 
erences therein). Also, there exists an Invariance principle for the Razumikhin- 
based stability results (see [66]). Although this kind of approach is not used in 
the chapter, the corresponding main idea is illustrated below. 

Consider the functional: 

which has the derivative: 

f = lx( t )2  + x(t  + O)2dO, 
T 

= - ( x ( t )  + x ( t  - r ) )  2. 

(3.24) 

The set for which this derivative is zero is given by: 

s = : ¢ ( 0 ) = - ¢ ( - r ) } .  

The largest invariant set M,  which is included in S is defined by all the initial 
conditions for which x(t) = - x ( t -  ~') for all t e lR, i.e. ~(t) = 0 and thus 
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x(t) = c, where c is a real constant. In conclusion, c = -c,  and thus c = 0, that 
is the asymptotic stability property of the trivial solution. 

For S~  stability, the necessary and sufficient condition is completely recov- 
ered, however the delay bound in the Sr case is not the best possible one. The 
difference is due to the technique that was adopted, deliberately chosen for its 
ease in coping with the general time-varying system uncertainty. Comparisons 
between this bound and the optimal one were discussed in [133]. Other details 
and comments about this approach are given later. 

Proposition 7 1) 
T, O<v<r~,i, 

The  c~-stabillty In the previous parts, we have not considered particular con- 
straints on the roots of the characteristic equation. In control theory, there is 
interest in knowing their location. If for linear systems without delays, we may 
consider various bounded or unbounded regions in the complex plane, for the 
delay case, one may consider only the a--stability case, i.e. such that the solu- 
tions have a decay rate a. Olbrot [148] has pointed out that increasing the delay 
for a given decay rate may induces instability in the system. 

A simple way to analyze such a property is to use the system transformation: 
y(t) = e~tx(t) and study the stability of the delay system expressed in "y". Let 
us illustrate this for the scalar single delay case. The system transforms to: 

y ( t )  = - ( a  - - be  y(t - ( 3 . 2 5 )  

Due to the appearance of the delay T in the "new" system parameters (fi, b), 
[~ = be ~r it follows that one cannot have delay-independent stability results, in- 
dependently on the "initial" (a, b) type property. Notice however that a cannot 
be larger than a + b. 

Using similar ideas to previous handled cases, we have the following result: 

I.f ( - a  + a, -b ,  r) is $ ~  asymptotically stable, then for any 

a - - o ~  

the system is a-stable. 

2) f f  ( - a  + a, -b ,  r) is $~ asymptotically stable, then the a-stability is guar- 
anteed for any T, 0 < V < Ta,d, where ~'~,d is the unique positive solution of the 
transcendental equation: 

o) 
x = e ) 

. 

It is easy to see that for a ~ 0, Tc~,i -* C~, and rc~,d ~ T* (given previously) 
after some simple computations. In conclusion, this result recovers the condi- 
tions given in Proposition 4. Notice that condition 1) can be obtained using also 
comparison principle type techniques (see [125]). 
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Some  r emarks  on the  scalar multiple delays case A complete study of the 
stability regions in the parameter space (in the "bounded / unbounded" sense) 
for systems involving two delays has been given in [72] using the properties of 
some complex functions associated to the characteristic equation; the commensu- 
rable case {r, 2r) has been considered in [160] via the/9-decomposition method. 

The general delay-independent case has been considered in [63] (see also [28]) 
using 7too properties of some appropriate transfer function associated to the 
system. 

Other comments and remarks on related techniques follow later. 

R e m a r k s  and commen t s  on the stability of second order delay systems 
In the previous paragraphs, we have remarked that the increasing of the delay 
size may have a destabilizing effect. Furthermore, in the single delay (constant) 
scalar case, there exist only two stability regions in the parameter space: $oo and 
S~, respectively, i.e. if the system becomes unstable at r*, it will be unstable for 
any r, T E (r*, c~). 

In this context, a natural question arises: Does this property hold for non- 
scalar linear systems? The answer is negative, and there exist some second order 
examples 5, which prove that the delay may have a stabilizing effect, i.e. if the 
system is unstable for T = rl, there exists at least one delay value v2 for which 
the system becomes stable. Such examples are given in [1, 68]. A complete study 
of the stability regions in the parameter space for the second order case is given 
in [81] using a Pontryagin based technique. For other remarks, see [14]. Necessary 
and sufficient conditions for delays-independent asymptotic stability for systems 
involving several (non-commensurable) delays are given in [18]. 

4 Frequency Domain Approach 

This section is devoted to the frequency-domain approach and related techniques 
used for the stability analysis of linear delay systems involving constant (com- 
mensurable or not) delays. We caution that these results are very difficult to 
generalize to the time-varying delays case. Furthermore, some of these are re- 
stricted to the single delay case. 

Special attention has been paid to the matrix pencil techniques, which allow 
to obtain some neat results which are readily interpretable. Although we do not 
aim to emphasize their numerical tractability, we shall briefly comment on this 
aspect. 

4.1 Analytical and Graphical Tests 

Analytical tests In this class of methods, one collects all the criteria that gen- 
eralize the Hurwitz method to delay systems. In fact, if we have a linear delay 

5 The term "second order" means that the dimension of the vector x in the corre- 
sponding euclidian space is 2. 
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system with a single or with commensurable delays, we may write the charac- 
teristic function associated to the characteristic equation in the quasipolynomial 
form: 

p q 
i kA P(A'e~) = Z ~ aikA e . (4.1) 

i=O k=O 

We have considered here: 

Pontryagin criteria. The main idea behind the Pontryagin criterion can be 
summarized as follows: Suppose that P(A, e ~) given in (4.1) has principal term 
(i.e. apq ~ 0). Let F(w) and G(w) denote the real and the imaginary part, 
respectively of the quasipolynomial P(., .). Then: 

. 

. 

If all the roots of P are in C- ,  then the roots of F(w) and G(w) are real, 
simple, alternate, and 

F'(w)G(w) - F(w)G'(w) > O, Yw E JR. (4.2) 

Conversely, all the roots of P are in C-  if one of the next conditions is 
satisfied: 

a) All the roots of F(w) and G(w) are real, simple, alternate, and the 
inequality (4.2) is satisfied for at least one w E 1R. 

b) All the roots of F(w) (or G(w)) are real, simple and for each root the 
inequality (4.2) holds. 

To illustrate the application of this criterion, consider the scalar case, with 
a = 0. Then G(~) = ~sin(wT) + b and F(~) = wcos(wv). The roots of F are real 

and simple: Wo = O, Wk -- k - 1/2T," k = 1, 2, .... Simple computations show that 
7( 

7( 
the asymptotic stability property holds for all v, satisfying: 0 _< T < ~ ,  which 

recovers the necessary and sufficient condition given in the previous section. The 
case a ~ 0 can be treated similarly. 

This method becomes more complicated in non scalar cases. The second order 
case has been considered in [14, 81]. Using similar ideas, sul~cient conditions for 
instability have been proposed in [24]. 

Chebotarev criteria. This criterion can be seen as the "direct" generalization 
of the Routh-Hurwitz criterion to the quasipolynomial case. The application of 
such a criterion is not very practical since it implies the computation of a "large" 
number of determinants. 

We shall point out here also the existence of other criteria, such as 
Yesupovisch-Svirskii criterion (see [165]), which is applicable for a restricted class 
of delay systems. 

Notice that all these analytical methods seem difficult to apply to the "delay- 
independent / delay-dependent" stability problems considered here. However, for 
the stability study of particular systems, it is important to see what method is 
suitable with respect to the system "structure". 
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R o o t  locus me thods  Consider the case of a delay system of the form ~ in- 
volving a single delay. As specified before, the roots of the characteristic equation 
associated to Z continuously depend on the system parameters. The root locus 
method idea is to determine the values of the parameters for which the charac- 
teristic equation has roots on the imaginaxy axis. One may see these 'limit' cases 
as the situations for which the system behaviour changes. 

In order to find "delay-independent / delay-dependent" regions in the pa- 
rameter space, the methods presented here are generally combined with other 
algebraic or analytical methods (for example, of Routh-Hurwitz or Pontryagin 
type). In this class, we can include: 

D-decomposition method [131]: This method consists in obtaining a "decom- 
position" of the parameter space in several regions, such that each region is 
bounded by a hypersurface which corresponds to the case when at least one root 
lies on the imaginary axis. Furthermore, for all the parameters lying in a given 
region, the corresponding characteristic equation has the same number of roots 
with positive real part. 

In this case, the stability study is reduced to the analysis of the regions with- 
out unstable roots. It is clear that each stable region depends on the parameters 
of the system Z, i.e. the "entries" A, Ad and T, and thus each "hypersurface" can 
be seen as a function of T. If T is considered as a parameter, the "evolution" of this 
hypersurface as function of T allows to detect the particular "delay-independent 
/ delay-dependent" regions. The scalar case can be easily analyzed (see previous 
sections) 

Notice that the method can be extended for delay systems involving com- 
mensurable delays. The parameter regions for the linear scalar case including two 
commensurable delays of the form {% 2v} has been considered in [160]. Other 
examples and applications can be found in [93, 154]. However, this method is 
very difficult to apply in the general case. 

T-decomposition method: This method is applied only for delay systems with 
a single delay and requires the transformation of the characteristic equation into 

a form: 

e ~s = Do(s ) \  Q ( s ) J '  

where Do is a ratio of two given polynomials. The idea of the method is to 
analyze the behaviour of the contour Do(j~) (w ~ ]R +) with the unit circle in 
the complex plane (since for s = jw, e j~r is on the unit circle). In particular, 
if there is no intersection with the unit circle, it is easy to conclude that the 
stability for the case T = 0 is preserved for all positive values of delay, that is 
a delay-independent type result. However this condition is only sufficient and 
not necessary and sufficient. For the scalar single delay case, it corresponds to 
a>lbf. 

Thus, to conclude on the type of stability one needs a second step, which 
consists in analyzing the root locus behaviour in a neighborhood of the "critical" 
values on the unit circle thus obtained. 
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Let us apply this idea to the scalar case. We have: 

n(s )  b 
Do(s)  - - -  - 

d(s)  s + a '  

and introduce now the polynomial W [191] defined as: 

W(w 2) = n ( j w ) n ( - j w )  - d ( j w ) d ( - j w )  = -a:  2 - a 2 + 52. 

Thus if jw0 is a root of the characteristic equation associated to E, then w 2 is a 
root of W. 

Consider now the case a = b > 0. The only root of W is w = 0, but in this 
case, the root locus has no intersection with the imaginary axis, and thus we may 
conclude asymptotic stability. Furthermore, since we do not need information on 
the delay size, it follows that this case enters in the "delay-independent class." 

Other comments and remarks can be found in [80, 101, 191, 38]. Furthermore, 
all these results can be extended to the more general case when P and Q are 
analytic functions (see Cooke and van den Driessche [34]). 

Other  methods: Other methods have been developed in [172], but they are 
relatively difficult to apply. We mention the simplification given in [147], based 
on a pivoting algorithm. 

A r g u m e n t  pr inciple  m e t h o d s  The argument principle is one of the basic geo- 
metrical method used in the control theory of linear finite-dimensional systems, 
see, e.g. the Nyquist criterion, the Satche diagram or the Michailov criterion. 
These principles can be applied to linear systems with delayed states since the 
number of the unstable roots in the complex plane is finite. However, these cri- 
teria may become difficult (complex form of the corresponding hodographs, see 
also [93] for basic results and examples). 

Another criterion has been proposed by [165]. Due to its wide applicabil- 
ity for general class systems described by functional differential equations, we 
have preferred to present it. For the sake of simplicity, consider a linear system 
involving a single delay and let Z the corresponding triplet. 

P r o p o s i t i o n  8 [165] The triplet Z is asymptotically stable if  and only i f  

0 ~(jw) # o,/or ~ e ]R + 
ii) The condition: 

lim f __1_1. d~T(A)d£ = O, 
H-+oo J(g) ,~(,,~) d,,~ 

where (g) is the "so-called" Bromwich  contour defined by g = U~=lgi, and: 
7r 7r 

- (gl):)~ = H e  jO, where 0 ranges f rom - ~  to ~ .  

- (g2): ,k = j w ,  where w ranges f rom H to O. 
- (g3): A = jw, where w ranges f rom 0 to - H .  
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Furthermore, if the conditions (i) and (ii) hold for any r, the triplet S is S ~  
asymptotically stable. 

Remark 6. Condition (i) means that the characteristic equation has no roots on 
the imaginary axis and condition (ii) says that there are no roots in C +. Some 
applications and further comments can be found in [165]. 

4.2 Special criteria 

M a x i m u m  Principle Based C r i t e r i a .  In this class, we have included the 
Small gain theorem based criteria and the so-called Mori and Kokame criterion 
[126]. 

Small gain theorem criteria. As an illustration of the idea, consider the $ ~  
asymptotic stability for a single delay case nd = 1. 

As specified before, it requires that the matrix A is Hurwitz stable (it is 
understood that (A, Ad) E S(0)). Introduce now the following finite-dimensional 
dynanfical system: 

i~(t) = Ax(t) + Aau(t), (4.3) 

which has the transfer function 

H,u(s) = (Sin -- A)-IAd.  

Suppose now that this transfer function satisfies the condition (see also [40]): 

sup llgx~(jw){l < 1, 
~vE~ 

then it follows via the maximum principle type argument [3], that 

sup l lH~(s)e -'~11 < 1, Vr ~ ~+.  

This condition leads to: 

d e t ( I n - ( s I n - A ) - X A d e  -'~) ~ O, V T e l R  +, s E © + ,  

which allows to conclude the delay-independent stability property. Related cri- 
teria can be found in [181] (resulting from the "Strict bounded real lemma" 
and the delay Riccati equation [182]) or in [27] (a singular value decomposition 
technique). 

Due to its facility to treat the Soo type problems for the non commensurable 
delays case, we present this case here. Thus, we have delay-independent stability 
(with respect to each delay) if the matrix A is Hurwitz stable and 

#x.d (M(jw)) < 1, w > O, 

where M(s)  is defined as follows: 

M(s)  = [In.. .In] T (sI,~ - A) -1 [Aaa ...Adn~]. 
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Here, Xn~ 6 is the corresponding family of block diagonal matrices [27, 150], de- 
fined by: 

• o ,  = • 

nd 

and ~ ki = nnd. 
i = 1  

Using similar ideas combined with matrix measures properties (see Desoer 
and Vidyasagar [42]), one can obtain various delay-independent [29] or delay- 
dependent conditions. Thus, for the single delay case, the triplet S is $~  asymp- 
totically stable if: 

IIP&tt < 1, 

where P is the unique symmetric and positive-definite solution of the Lyapunov 
equation: 

A T p  + P A  = -2 In .  

Notice also that this technique allows to recover the result due to Mori et al. [124] 
(using a comparison principle technique), which can be summarized as follows: 
the triplet ~ is $~  asymptotically stable if: 

#(A) + l l& l l  < O, 

where #(A) is the corresponding matrix measure of A (see notations). 
For the single delay scalar case, delay-independent asymptotic stability is 

implied by the following conditions: 

1 b a > o, t ~ I I  <1, VwE]R, 

condition which is equivalent to a >[ b 1. 

Remark 7. We have developed here only sufficient conditions, which are close 
to the necessary and su~cient  ones, which require w E JR*, instead of w E JR, 
etc. (see [27] and the references therein). Furthermore, notice that relationships 
between the scalar case with single or several non commensurable delays and 
some 7-/oo norm of some associated transfer function have been considered in [63, 
28]. 

s The general form is X~a (7) defined by: 

where 1 is replaced by 7. 
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Mori and Kokame criterion [126]. The idea of this criterion is based on 
the maximum principle of an harmonic or subharmonic 7 function [3] combined 
with the following root property of the characteristic equation associated to 
Z: if there exist unstable roots of the characteristic equation, then they are 
located in a compact domain in @+. Thus, the stability problem is reduced to 
the computation of a given function on the boundary of a compact domain. 
Several methods to restrict the compact domain have been proposed in [192] or 
in [194]. Other comments can be found in [169, 168]. 

Po lynomia l  cr i ter ia  In this class of criteria, we have included the following 
cases: 

- One variable polynomial: the Tsypkin criterion [93] and the matrix pencil 
techniques [133, 26, 27]. 

- Several variables polynomials: two variables (see [87, 88]) or several variables 
(see [71]). 

Tsypk in  cri terion.  This criterion is one of the first results of delay-independent 
closed-loop stability type. Let us consider a transfer function of the form: 

P(s) e-s  
H 0 ( s ) -  Q(s) ' 

where P(s) and Q(s) are real polynomials of degrees ( n -  1) and n, respectively. 
Then we have the following result (see also [93] and the references therein): 

P ropos i t i on  9 (Tsypkin  cri ter ion) If Q(s) is a stable polynomial, then the 
closed-loop system: 

p(s)e - ~  
Hb(S) = Q(8) + 

is $oo asymptotically stable if and only if the following condition 

I Q(jw)[ > I P(J w) 1, 

holds for all w E ]Ft. 

Remark 8. A generalisation of this result in the multiple delays case has been 
given in [47]. For the sake of simplicity we do not consider it here. 

Two variables  po lynomia l  cr i ter ia  To the best authors knowledge, the con- 
nection between delay-independent stability of linear system with commensu- 
rable delays and the roots distribution of an associated two variables polynomial 
have been firstly considered by Kamen [87, 88], and has been largely treated in 
the literature. The basic idea of such an approach can be summarized as follows: 

z See also [20] for the applications of such functions in control. 
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First, the corresponding characteristic equation (associated to Z) with re- 
spect to imaginary axis, 

det wI,~ - A - Adke -j~k'~ = O, w E IR 
k = l  

can be interpreted as a two independent variables equation: 

- one on the imaginary axis "jw" and 
- the other one on the unit circle "z -- e -j~r' '  , since r is a "free" parameter. 

Second, due to the continuity properties presented in the previous section, the 
delay-independent stability can be reduced to check: 

nd  

- the Hurwitz stability of the matrix A + E Adk, and 
k = l  

- if the corresponding characteristic equation has no roots on the imaginary 
axis, i.e. if there are no roots which cross the imaginary axis, and thus the 
corresponding upper and lower bounds Uh and lh, respectively satisfy the 
conditions Uh < 0 and l~ = +ec. 

Thus, we have the following result [71]: 

P r o p o s i t i o n  10 The following assertions are equivalent: 

i) The triple ~ is 8oo asymptotically stable 
ii) (A, Ad) e 8(0)  and 

od ) 
det w I n - A - E A d i z i  ¢ 0, w e l R * ,  z e C ( 0 , 1 )  

i=1 

(4.4) 

Remark 9. Similar results for more general differential equations including de- 
layed states have been developed in [33]. To the best authors konwledge, there is 
no general way to reduce the computation difficulty of such problems, excepting 
the case of commensurable delays. 

Remark 10. We have preferred to present only the delay-in~tependent stability 
case here. It is clear that the delay-dependent case corresponds to the situation 
when the equation (4.4) has some roots on the imaginary axis and unit circle, 
respectively. Furthermore the condition (ii) seems difficult to be verified by direct 
computation. 

Remark 11. For the sake of simplicity, we have not considered the multiple delays 
criteria with non-comensurate delays. In this case, we should handle a polynomial 
with nd -b 1 variables, where nd is the number of non-commensurable delays (we 
may have also the "mixed" case: some commensurable delays combined with 
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non-commensurable ones). Thus, for a triplet ~,  the corresponding polynomial 
(in the hypothesis when all the nd delays are not commensurable) becomes: 

P(w, zl, znd) = det w i n - A -  Adkzk 
k = l  / 

More details are given in [74, 75] and the references therein. 

Other two variables type methods can be found in [31] (delay-dependent type 
results using two polynomials) or in [156] ( delay-independent type results for 
the single delay case only). The Repin's idea was to use a different form for the 
condition (ii) in Proposition 10. Thus, for the single delay triplet E = (A, Ad, ~r), 
one has S~  asymptotic stability if: 

- A is a Hurwitz stable matrix, and 
- for every w E JR*, the solutions of the equation 

det [ )~A + Ad -~wIn ] = 0, 
AwI~ hA + Ad 

satisfy the condition t )~ I < 1 (see also [71]). 

Notice here that for delay-independent stability one needs implicitly the Hurwitz 
nd 

stability of the matrices A and A + Ad (or A + E Adk). These aspects will be 
k = l  

considered later, when some simple sufficient tests for $~ are given. 

Ma t r ix  pencils techniques  A different way to handle such "delay- 
independent / delay-dependent" criteria is to use the matrix pencil techniques. 
We have briefly presented before the two variables polynomial approach. One of 
the major inconvenient of the corresponding results consists in the difficulty to 
check the condition on numerical example. Thus, we need to simplify it, and one 
of the way is to reduce the variables number from two to one; the "reduced" one 
can be, for example, the imaginary axis variable (jw, w e ]PJ)° 

This fruitfull idea has been exploited by Chen et al. [28] (matrix pencil frame- 
work) and by Su [169] (eigenvalues computation of an appropriate complex ma- 
trix with a larger size than the system's matrices). The approach in [28] consists 
in computing the generalized eigenvalue distribution with respect to the unit 
circle for an associated constant, and finite dimensional matrix pencil. Notice 
that this matrix pencil is obtained using a linearization technique for matrix 
polynomials. In the framework presented here, this matrix pencil is the so-called 
matrix pencil associated to finite delays. In order to give a complete charac- 
terization, one needs to use the generalized eigenvalue distribution of a second 
matrix pencil, the so-called matrix pencil associated to infinite delays. 

Other matrix pencils techniques have been considered in [26], where the sta- 
bility properties are reduced to the generalized eigenvalues distribution for some 



Time-delay Systems 31 

associated frequency-dependent matrix pencils. A different approach has been 
considered in [141], where a sufficient condition for delay-independent stability 
is given in terms of some appropriate algebraic properties of a matrix pencil, 
possibly singular. The construction of such matrix pencils is similar to the one 
encountered in the optimal control theory for linear systems without delay. 

Before giving the main results, we introduce the following notion: 

D e f i n i t i o n  5. Let us consider two real matrices: M, N E ]R hxh. 

1) The matrix pencil A = z M  + N, z E C is called simply dichotomic relatively 
to the unit circle if it has no eigenvalue on the unit circle. 

2) The matrix pencil A = z M  + N,  z E C is called dichotomically separable 
relatively to the unit circle if there exist r eigenvaiues Ai, i = 1--,~, 1 < 
r < h such that I Ai [> 1 >t Aj 1, for all i = 1--,7, for all j = r + 1, h 
(i.e. r eigenvalues outside the unit circle and all the others inside the unit 
circle). Furthermore, if h = 2r, then the matrix pencil is called symmetrically 
dichotomically separable relatively to the unit circle. 

Consider the matrix pencils: 

Ai(z) = z M i +  Ni, i = 1 , 2 .  (4.5) 

associated to the triplet ~ ,  where M1, Nx E ]R (2ndn2)×(2n'~n2) t142, 
Nz E ]R (nan)x(nan) are given by: 

"In2 0 . . .  0 0 "0 --In2 0 . . .  0" 
0 1 , ,2 . . .  0 0 0 0 - - In2  . . .  0 

M1 = ".. ,N1 = ".. , 

0 0 . . . In2  0 0 0 0 . . .  - ln2  
0 0 . . .  0 And ® I,~ B-n~ B-n~+~ B-n.,+2 . . .Bnd-1 

"I,, 0 . . .  0 0 O - I n  0 . . .  0 0 (4.6) 
O ln . . .  O 0 0 0 - - I n . . .  0 0 

M s =  ".. , N 2 =  " .  , (4.7) 

0 0 . . . I n  0 0 0 0 ...  0 --In 

0 0 . . .  0 And A A1 A2 .. .  Ana-2 And-1 

with B-k  (k = ~ ,  Bi (i = 1, na - 1) given by: 

B-k  = I n @ A  T , B i = A i ® I n ,  

Bo = A ~ A  T, 

where ®, @ are the product and the sum of Kroneeker (see Lancaster and Tis- 
menetsky [99]). Following [133], the matrix pencil A1 (z) is associated to the ease 
of finite delays and A2(z) to the ease of infinite delay. 

Denote by or(A) the set of eigenvalues of the matrix pencil A and let ~ra = 
a(A1) - a(A2) (i.e. the generalized eigenvalues of the matrix pencil A1, which 
are not eigenvalues of A2). 

With these notations and definitions, the following results: 
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T h e o r e m  1 (Delay- independent  stabil i ty) [133, 143] The following state- 
ments are equivalent: 

(i) The triplet S is S ~  asymptotically stable. 
(i O The pair (A, Ad) E S(O) and the matrix polynomial 

791(Z) 
rid--1 

(AM, ® Inlz 2"d + Boz "d + B-n~ + ~_, (Bkz ""+' + B - k z  ""-i) 
i = I  

(4.8) 

has either no roots on the unit circle; or if it does, all the roots zo of 791 (z) 
on the unit circle are roots of the matrix polynomial 792 (z): 

~d 

P2(z) = A + E Akzk. (4.9) 
k = l  

(iii) The pair (A, Ad) E S(O) and the matrix pencil A1 is either dichotomically 
separable relatively to the unit circle or if not, all the generalized eigenvalues 
Zo of A1 on the unit circle are eigenvalues of A> 

Remark 12. It is easy to see that the matrix pencils techniques can be included 
into the one variable polynomial type criteria, but it seemed better to treat it 
separately due to its applicability for numerical treatments. 

Following [57], the matrix pencils A1 and A2 are the linearizations of the ma- 
trix polynomials 791 and 792, respectively. In conclusion, all the results obtained 
in the matrix pencil framework can be easily converted into a polynomial frame- 
work and conversely. For the numerical implementation, we prefer to present only 
the matrix pencil formulation. Methods and algorithms for the computation of 
the corresponding generalized eigenvalues can be found, for example, in [58], etc. 

Remark13. It is easy to see that the triplet ~ is S~ asymptotically stable if 
the corresponding system free of delay is stable and the matrix pencil A1 is 
dichotomically separable with respect to the unit circle. This condition is only 
a sufficient condition, but close to a "necessary and sufficient" one (for other 
comments and comparisons, see also [133]). 

Remark 14. Since we are in the delay-independent stability case, the condition 
(A, Ad) e S(0) in (ii) or (iii) can be replaced by (A, Ad) e S(r), for some 
r > 0. We prefer the first variant due to its simplicity in verifying such stability 
conditions. 

Remark 15. Suppose that ~ is associated to a single delay system. From Theo- 
rem 1, simple computations prove that the following conditions: 

- A + Act is Hurwitz stable, and 
- get [(A + AdZ) T (~ (A + zAd)] ~ O, for all z e C(0, 1) 
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are only sufficient to guarantee that Z is S~ asymptotically stable (see also [169, 
133]). 

We have the following: 

T h e o r e m  2 (De lay-dependen t  stabil i ty)  [133, 143] The following state- 
ments are equivalent: 

(i) The triplet ~ is 8r asymptotically stable. 
(ii) The pair (A, Ad) e 8(0) and the matrix pencil Aa has at least one gener- 

alized eigenvalue Zo on the unit circle which is not eigenvalue of the matrix 
pencil A2. Furthermore, the optimal bound on the delay size is given by: 

T* = min min ak (4.10) 
l < k < 2 n ~ n  ~ l < i < n  03ki ' 

where C~k E [0, 2r], e - j ~  E aa and jwki is an eigenvalue of the complex 

matrix A + Z Aie-Jaki" 
i = 1  

Remark16. One of the "delay-independent / delay-dependent" stability prob- 
lems is the computation of the generalized eigenvalues of two finite-dimensional 
matrix pencils of large dimension. For a reduction of this complexity, based on 
a tensor product approach, see [145] (basic notions on such an approach can be 
found in [117]). 

For example, consider the single delay scalar case. The corresponding At and 
A2 are given by: 

[10] [01] 
A1 = z 0 - + -b  -2a  ' 

A2 = - z b -  a. 

Suppose now that b ~ 0. In this case, the corresponding generalized eigenvalues 
are zl,2 (A1) and z' (A2): 

zl = - ~ +  - 1 ,  z 2 -  b - 1 ,  z ' - - - a  
b" 

Thus, if A1 is dichotomically separable with respect to the unit circle then a >] 
b I; A1 and A2 have the same eigenvalues on the unit circle if a = b > 0 (we have 
the hypothesis: a + b > 0); A1 has eigenvalues on the unit circle, that are not 
eigenvalues of A2 if b >] a h etc. 

This technique can be easily extended to the following type problems: 

delay-interval stability analysis, i.e. for a given delay value TO for which the 
stability property is guaranteed, to find the optimal bounds T_ __ TO, ~ > r0, 
such that the corresponding triplet ,~ is asymp'totically stable (or hyperbolic) 
for all v E (_% ~) (see, for example, [144]). 
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delay-independent - delay-dependent or delay-interval hyperbolicity, i.e. to find 
if there exists or not roots of the characteristic equation on the imaginary 
axis under relaxed assumptions on the linear system free of delay (see, for 
example, [143, 144]). 

For the briefty of the presentation, we consider here only the delay-independent 
hyperbolicity with a given number of roots in C + and the delay-interval stability 
type problems. 

We have the following results: 

P ropos i t ion  11 [143] Consider the triplet S satisfying the eigenvalue distribu- 

tion In  A + ~_, Adk = (n,~, n~, O) for r = O. Then the .following statements 
k----1 

are equivalent: 

(i) ~, is delay-independent hyperbolic with nv roots with positive real part (in 
C +) of the characteristic equation. 

(iO The matrix pencil A1 is dichotomically separable relatively to the unit circle 
or if not, all the generalized eigenvalues Zo of A1 on the unit circle are either 
eigenvalues o] A2, either they satisfy: 

In  A +  Aak = In  A +  AdkZ , 
_ k = l  

for all zo e e(0, 1) f3 or,. 

For a given real r > 0, introduce now the sets: 

~ ( T k ~ , C ~ k )  : Tkl ~ --O~k > r : e - j a k  E O'a, f i r , ÷  ( V3k i 

j w k i S A  A + Z e - J h a k A h  -{0} ,  l < k < 2 n  2, l < i < n  
h--=l 

~(rk,,c~k) : rk~ = ~_k < r  : e - ~  eAa ,  ~r r -- ( 

jaJk~ e A A + Z e-Jh~k Ah -{0} ,  l < k < 2n ~, l < i < n  
h = l  

P ropos i t ion  12 [144] Consider the triplet 2L The .following statements are 
equivalent: 

(i) The triplet 2~ is delay-interval asymptotically stable. 
(ii) There exists a r > 0 such that (A, Ad) e S(r) and such that the sets at,+ 

and at . -  are not empty. The exact bounds on the delay interval including r 
a r e  

~ = rain {r : (o~,'r) ear ,+} 

= m a x { , -  : 



Time-delay Systems 35 

Furthermore, if 7" E {7", ~}, the corresponding characteristic equation has at least 
two complex conjugate eigenvalues on the imaginary axis. 

Remark lZ  It is clear that if at,+ is an empty set, then we have the stability 
guaranteed for all delays in (T_, +C¢); if a t , -  is empty, then we have the "delay- 
dependent" stability, with the corresponding [0,Y); and, if both sets at,+ and 
at , -  are empty, then we have "delay-independent" stability. The results can be 
developed similarly for the hyperbolic case. 

5 T i m e - D o m a i n  A p p r o a c h  

5.1 Lyapunov ' s  Second M e t h o d  

It was mentioned earlier that there are two ways to develop the second method 
of Lyapunov for time-delay systems, 

- One is based on the theory of Lyapunov-Krasovskii functionals. 
- The other is based on the theory of Lyapunov-Razumikhin functions. 

These approaches were briefly sketched for the scalar single delay case (The 
corresponding stability theorems can be found in the Appendix). One of the 
ways to extend these results to the general case is given below. 

Lyapunov-Krasovskii funct ional  m e t h o d  We limit the analysis to the sin- 
gle delay and time invariant case. In the cited references, various extensions 
are given: from the single delay case to multiple delays, time-varying delays, 
etc. Basically the complexity increases somewhat but the main ideas remain the 
same. 

Delay-independent type criteria. Consider first a triplet 27 = (A, Ad, r),  
including a single delay and introduce the following Lyapunov-Krasovskii func- 
tional: 

V(xt )  = x ( t ) r p x ( t )  + fo  r x(t  + o)Tsx(t  + O)dO 

P > 0 ,  S > 0  
(5.1) 

Following the same idea as in the scalar case, this functional yields: 

Proposition 13 The triplet 27 is Soo asymptotically stable if there exists a triple 
of symmetric positive definite matrices P > O, S > 0 and R > 0 satisfying the 
(delay) Riccati equation: 

A T p  + P A  + P A d S - 1 A T p  + S + R = O. (5.2) 
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For details, see [179, 182]. Using the Schur complement property, the inequality 
(5.2) can be transformed into an LMI ("linear matrix inequality", see [21] and 
the references therein) form: 

A T p  - S  < 0 (5.3) 

P > 0 ,  S > 0  

and thus the Soo problem is reduced to the feasibility of an LMI, i.e. finding if 
there exist matrices P and S which satisfy simultaneously the set of constraints 
(5.3). 

Remark 18. A necessary condition for the existence of a triple of positive definite 
matrices solving the Riccati equation (5.2) is the Hurwitz stability of the matrix 
A. This condition was also seen to be necessary for delay-independent stability 
in the previous section. 

Remark19. Using the Bounded Real Lemma, one can relax the conditions in 
(5.2). In fact, we may look for solutions satisfying P _> 0 for the Riccati equa- 
tion [137]: 

A T p + P A + P A d S - 1 A T p + s  = O. 

Another relaxation (P _> 0 and S > 0) has been considered in [141], where the 
stability problem is reduced to the existence of positive-semidefinite solutions for 
some appropriate Lur'e system, via some appropriate (possibly singular) matrix 
pencils. 

Remark 20. An equivalent frequency domain interpretation is given in [181]. 

Furthermore, if there exists a decomposition of the matrix Ad given by: 

Ad = BD, B e IR n×m, D E ]R mxn, (5.4) 

where m < n and rank(D) = m, then it is possible to modify Proposition 13 to: 

P ropos i t i on  14 The triplet Z satisfying (5.4) is Soo asymptotically stable if 
there exists a symmetric and positive definite solution P > 0 to the following 
Riccati inequality: 

ATp  + PA ÷ P B S - 1 B T p  + DTSD < 0, (5.5) 

where S E ]R m×m is a symmetric and positive definite matrix. 

An advantage of a such decomposition of Ad lies in the fact that the associ- 
ated LMI problem has smaller dimension: (m + n) x (m + n), instead of 2n x 2n. 
The corresponding Lyapunov-Krasovskii functional is: 

V(xt) = x(t)Tpx(t) + f°_ r x(t + ~)TDTSDx(t + ~)d~ 

P > 0 ,  S > 0  
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This Lyapunov-Krasovskii based Riccati equation formalism was extended to 
the time-varying case (including time varying delays) in [180]. See also [107]. 
For example, in the case when in the triplet Z, the delay T is time-varying with 
bounded derivatives (~-(t) <_ ~3 < 1), choose a Lyapunov-Krasovskii functional 
(5.1) is ([137]): { 1; 

Y(z~) = =e(t)Tpx(t) + ~ _ ~  z(t + o)Tsx(t  + O)dO (5.6) 
T ~ 

P > 0 ,  S > 0  

and Proposition 13 becomes: 

P r o p o s i t i o n  15 The triplet Z is So~ stable if the there exists a symmetric and 
positive definite solution P > 0 to the following Riccati inequality: 

A T p  + P A  + PAdS-1ATdP + 1 - - ~ S  < O, (5.7) 

where S E IR ~×n is a symmetric and positive definite matrix. 

The case with the decomposition on Ad = BD runs similarly. 
Consider now the a-stability case. Using the same ideas as in the scalar case, 

we have the following: 

P r o p o s i t i o n  16 The triplet S satisfying (5.4) is a-stable for all T >_ 0 for which 
there exists a symmetric and positive definite solution P > 0 to the following 
Riccati inequality: 

A T p  + P A  + e2a~PBS-1BTp + DTSD + 2aP < 0, (5.8) 

where S E 11% m×m is a symmetric and positive definite matrix. 

By the Schur complement property (5.8) is equivalent to the following LMIs: 

e~rBTp - S  < 0 (5.9) 

P > 0 ,  S > 0  

Notice that for a = 0, these LMIs completely recover the case of 8oo stability. 
Due to the form of (5.9), we may see that the computation of the suboptimal (in 
the sense "maximal allowable") 7-* is a generalized eigenvalue optimization type 
problem [21] in the variables P and S. A "convex / quasi-convex" alternating 
procedure has been proposed in [146]. 

Consider now the case with multiple delays, which are not commensurable. 
For the simplicity of the presentation, we take na = 2. Ways to extend the 
Lyapunov-Krasovskii functional (5.1) to this case are: 

{ (5.1o) 
P > 0 ,  S1 >0 ,  S2 > 0  
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o r :  

V(xt) = x(t)rpx(t) + ~ x(t + o)TNx(t + 0)d0 (to = 0) .(5.11) 
i =  1 r l  

P > O, $1>0,  $2 -$1  >0 

if we assume r! <_ 7-2 (this restriction turns out to be in fact immaterial for the 
resulting criterion, see e.g. ([179, 182]). 

Since the corresponding delays-independent conditions are similar, we de- 
velop here only the results obtained via the Lyapunov-Krasovskii functional of 
the form (5.10). 

We have the following result expressed in the LMI form: 

Propos i t ion  17 Suppose that Ai = BiDi, i = 1,-'2, with Di of maximal rank. 
Then E is Soo stable if the following LMIs hold: 

BTp  -$I  0 < 0 (5.12) 
BTp 0 -$2 

P > O, $1> 0, $2>0 

Using similar ideas, these results can be easily extended for the time-varying 
delays case. Other remarks on this method can be found in [21, 48, 133, 180]. 

The Riccati-equation technique (or LMI) was also adapted to systems with 
distributed delays [185, 187]. Analogous results have also been found in the 
discrete case (i.e., delay-difference systems). Such equations are already finite 
dimensional (for commensurable delays), but treating them as 'delay'-systems 
allows a considerable reduction in dimension. For details, see [84, 186]. For de- 
lay systems with stochastic perturbations, it can be shown that the considered 
Lyapunov-Krasovskii functionals have the supermartingale property if again a 
Riccati type equation holds for some positive definite matrices. By a straight- 
forward extension of Khasminskii's theory, stochastic stability can then be con- 
cluded. Details can be found in [52, 184]. Finally, some preliminary ideas for ap- 
plications of the approach to nonlinear delay systems are presented in [188, 189]. 

Delay-dependent type criteria Consider first the triplet ~ ,  when one has a 
single and constant delay. As in the scalar case, the analysis will be performed 
on the [t - 27-, t] system: 

e(t)  = (A + Ad)x(t) + Ad [Ax(t + O) + adx(t + 0 - r)] dO, (5.13) 
T 

obtained using the Leibniz-Newton formula for the "original" system. 
The associated Lyapunov-Krasovskii functional is: 

V(xt) = sup e~°x(t +O)Px(t +O) 
0e[-2r,O] (5.14) 

P>O, 5=11og(1+~): ~ e l R  + 
7" 
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Although the form of this functional is quite complex, we see that it depends 
only on one positive definite matrix P. Connections between this functional and 
the Lyapunov-Razumikhin function V(x(t)) = x(t)Tpx(t) have been considered 
in [89] via a comparison principle. 

Perhaps a general view is that it is preferable to use Lyapunov-Krasovskii 
functionals for delay-independent criteria and Lyapunov-Razumikhin functions 
for delay-dependent type results. 

Lyapunov- l : tazumikhin  funct ion approach.  As in the Lyapunov-Krasovskii 
functional approach, we shall present the following cases: 

Delay-independent type results. Consider first the single delay case with a 
time-varying delay r(t) E ])(r), with r positive, but arbitrary. The corresponding 
Lyapunov-Razumikhin function is: 

V(x(t)) = x(t)Tpx(t) 
(5.15) 

P > 0  

The same methods as in the scalar case lead to: 

P ropos i t i on  18 The triplet S = (A, Ad, T(t)) is Sv,c~ stable if one of the fol- 
lowing (equivalent} conditions holds: 

(i) there exists a symmetric and positive-definite solution P to the following 
Riccati inequality: 

A T p  + PA + ~ - I P A d P - 1 A T p  + ]~P < 0, (5.16) 

(ii) there exists a symmetric and positive-definite solution Q to the following 
matrix inequality: 

QA T + AQ + #-IAdQAT + #Q < 0, (5.17) 

where ~ is a positive scaling. 

Remark21. The condition (5.17) is obtained from (5.16) by pre and postmulti- 
plying the last one by p -1  and taking Q = p-1 .  

A way to relax (5.16) is to consider the Riccati inequality: 

A T p  + PA + 13-1PAdS-1ATp + ~ p  < O, (5.18) 

with the constraint P > S. Notice that this technique will be applied to uncertain 
systems. Thus, if/~ = 1, the stability problem is reduced to the feasibility problem 
of the following set of LMIs: 

A T p  - S  < 0 

P> S, S>O 
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All the results proposed in the Lyapunov-Krasovskii functional framework may 
be developed along the same lines as for Proposition 18. For the sake of brevity, 
we do not develop them here. 

Delay-dependent type results. As shown earlier, delay-dependent conditions 
are obtained from the Razumikhin approach on the associated [t - 2T,  t] system: 

/ ~  [Ax(t + ~) + Adx(t + - T)] (5.19) it(t) = (A + Ad)x(t) + Ad r(t) d~. 

Thus, we have the following result: 

P ropos i t i on  19 The triplet ~ = (A, Ad, T(t)) is uniformly asymptotically sta- 
ble for any r(t) E V(T*) if one of the following (equivalent) conditions holds: 

(i) there exists a symmetric and positive-definite solution P to the following 
Riccati inequality: 

(A + Ad)Tp + P(A + Ad)+ 

+7* [ ~ I P A d A P - 1 A T  ATp  + ~ I P ( A d ) 2 P - I ( A T ) 2 p  + (~1 + ~2)P] < 0 

(5.2o) 

(ii) there exists a symmetric and positive-definite solution Q to the following 
matrix inequality: 

Q(A + Ad) T + (A + Ad)Q 

+T* [~ IAdAQAT AT + [3;~(Ad)2Q(AT) 2 + (~1 + ~2)Q] < 0,(5.21) 

where ~1 and ~2 are positive sealings. 

Remark22. Proposition 19 becomes very restrictive if the system is Sv,~. In 
conclusion, we consider that the time-domain techniques should be applied as 
follows: 

- First, check if the system is delay-independent stable using a Lyapunov- 
Krasovskii functional approach; 

- Second, if we have failed, we give a suboptimal bound (in the sense "max- 
imal allowable") on the delay size using a Lyapunov-Razumikhin function 
approach. 

However, there are some simple cases for which we may conclude that the 
stability is of delay-dependent type. We have seen before, that delay-independent 
asymptotic stability implies that the matrix A is Hurwitz stable. Thus, if 
(A, A4) E S(0), but A is an unstable matrix, then the corresponding triplet 
E: is ~¢~- stable. Using similar arguments, we have the following result: 

P ropos i t i on  20 Assume that (A, Ad) E S(O). Then the triplet ~ is Sr stable 
if one of the following assertions holds: 
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a) If the delays are commensurable, 
i) the matrix A is unstable. 

nd 

ii) the matrix A + Z ( - 1 ) i A a i ,  is strictly unstable (i.e. there exist at least 
i = 1  

one eigenvalue with strictly positive real part). 
b) If the delays are not commensurable, the previous condition i) and 

nd 

ii') the matrices A + Z (-1)J' Adi, (where Ji is any value ji E {-1, 1}, 
i = 1  

excepting the case ji = 1 for all i) are strictly unstable. 

Remark 23. For the sake of simplicity, consider now the single delay case S = 
(A, Ad, T), with A + Aa, A Hurwitz stable matrices, but with no strictly unstable 
eigenvalues for the matrix A - Ad (i.e. in C-  or on fiR). 

If the only eigenvalues on the imaginary axis are in 0, it is still possible to 
have delay-independent stability. This is the case of a single delay system of 
the form ,U = ( - a , - a ,  r),  with a > 0. Other examples can be found in [133]. 
Some remarks on the limit case, i.e. Ad = aA, with a E (-1,  1] can be found 
in cite2halel (real eigenvalues for the matrix A) or in [27] (general case). 

Remark 24. For the single delay scalar case, the above conditions completely re- 
cover the necessary and sufficient condition for delay-dependent stability. How- 
ever, for the general case, these conditions are not necessary. 

Remark 25. Proposition 20 can be extended to time-varying delays using similar 
arguments [133]. 

Combining Proposition 19 and 20, it follows: 

P ropos i t ion  21 Assume that the pair (A, Aa) satisfies the conditions of the 
Proposition 20. Then the triplet S = (A, Aa, T(t)) is Sv,r uniformly asymptoti- 
cally stable for any T(t) E );(T*) if one of the following (equivalent) conditions 
holds: 

(i) there exists a symmetric and positive-definite solution P to the following 
Riccati inequality: 

(A + Aa)T P + P(A + Aa)+ 
- 1  --1 T T +T* [~TxPAaAp-1ATATp  + ~1 PAdAaP A aA d P + (~1 + ~2)P] < 0 

(5.22) 

(ii) there exists a symmetric and positive-definite solution Q to the following 
matrix inequality: 

Q(A + Aa) T + (A + Aa)Q+ 

+r* [~7IAaAQAT AT + ~I(Aa)2Q(AT)2 + (~1 + ~2)Q] < 0,(5.23) 

where 81 and ~2 are positive scalings. 
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The computation of a suboptimal bound (in the sense maximal allowable) 
on the delay size can be reduced to an LMI optimization problem. Thus, for 
example, if the scalings f~i = 1 (i E {1, 2}), then we have the following: 

max T* such that 
Q=Qr> o (5.24) 
(5.23) holds, 

which is a standard LMI generalized eigenvalue problem, which is a quasiconvex 
one (see [21]). An alternative "convex / quasiconvex" (using the scalings f~ as 
parameters) algorithm has been proposed in [138]. 

For the sake of simplicity, we do not consider here the a-stability case. The 
"methodology" is similar, but makes use of a different associated functional 
differential equation. 

Consider now the multiple delays case, and suppose that  the delays are not 
commensurable. For the sake of simplicity, we present only the two delays case, 
but  the results can be easily extended to the general case. Using similar argu- 
ments, we have the following result: 

P r o p o s i t i o n  22 Asssume that the pair (A, Ad), with Ad = [Adl Ad2] satisfies 
Proposition 20. The triplet ~ with r = (Vl(t),T2(t)), where Ti e )2(r~) (i e 
{I, 2}) iS tv,r unifo~nly asymptotically stable, if there exist a symmetric and 
positive-definite matrix P and scalars flj (j = ~, 6) such that the following matrix 
inequality holds: 

" T~PAdlM * M T2 PAd2 
<0, 

j : l  
T~MTATIP --T~R1 0 
T~MTAT2P 0 -'r~Re 

(5.25) 

where: 

M = [ A  Adl Ad2] ,  

R1 = diag(~lP,~2P,~3P), 

R2 = diag (l~4P, ~sP, ~sP) . 

The matrix inequality (5.25) is not an LMI in the set of all variables. An 
alternative "convex / quasi-convex" feasibility algorithm for given delay values 
~-~ and T~ can be given [133]. 

If we consider the delays as constant parameters, "sub-optimal" ellipsoids (or 
other convex regions) in the delay space can be computed [139]. Other remarks 
can be found in [133]. 

Mixed delay-independent / delay-dependent stability As specified in the pre- 
vious section, in the multiple delays systems case, we can consider the "mixed" 
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delay-independent / delay-dependent stability with respect to a given "partition" 
of the delay set • = [vl, . . . Vnd]. 

For a simplified presentation, we shall consider the case of two delays: rt 
and T2, respectively, and without loss of generality, we shall impose that the 
corresponding triple Z is delay-independent "in" r2 and delay-dependent "in" 
T1. To obtain such results, the analysis will be performed on [t - 2T1, t] for the 
system obtained by integrating the "original" functional differential equation. 
Then, we have the following result: 

P ropos i t ion  23 The triplet E with r = (n(t),r2(t)), where n e 1)(if) (i E 
{1,2}) is Sv,r/Sv,oo uniformly asymptotically stable, if there exist a symmetric 
and positive-definite matrix P and scalars ~j (j = ~,3) such that the following 
matrix inequalities hold: 

(A + AT1p + P(A + Adl) 
3 ) 

j = l  
v~ MT AT1p 

AT2p 
P>_R2, P > 0  

T~PAdlM PAds 

-r~ R1 0 
0 -R~ 

<0,  
(5.26) 

where: 

M = [A Adl Ad2], 
R1 = diag(fhP, fl2P,~3P), 

Remark26. It is easy to see that by setting Ad2 -- 0 and f~3 = 0, we have a single 
delay system and this result completely recovers the delay-dependent type result 
via a Lyapunov-Razumikhin function approach. 

Similarly, the corresponding delay-independent type result is obtained if we 
set Adl -- 0 and T1 = 0, etc. 

5.2 Compar i son  Pr inciple  

The idea is to find an ordinary differential equation, or a functional differential 
equation, called (B), with known asymptotic behaviour such that its (asymp- 
totic) stability implies the (asymptotic) stability for the initial time-delay sys- 
tem, called (A). In this case, we say that the system (B) is a comparison system 
for the system (A). 

The first comparison principles have been estabilished by Halanay [67], Lak- 
shmikhantam and Leela [97] arid Driver [45]. Notice that such approaches allow 
to give different proofs for classical stability theorems relaxing some of the con- 
ditions, or to propose new analyzing techniques for general functional differential 
equations (see, e.g. [54]). The tool which seems best adapted to such an approach 
is the vector Lyapunov .functions, see [11, 119]. 
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Guided tours of the techniques used to develop such criteria is given in [38] 
(delay-independent type results) and in [62] (delay-dependent results). 

Using the comparison principle ideas combined with some matrix techniques, 
the following approaches seem the most interesting: 

Matrix measures One of the first results in this framework is due to Mori et 
al. [124], where the delay-independent stability of a single delay-system described 
by the triplet zU is reduced to check the condition: 

i t(A)+llAall < 0. (5.27) 

Using a different approach, Hmamed [76] has proved that the triplet S is S~ 
stable if: 

I t (A)+It (zAd)  < 0, z E ¢ ,  I z l = l .  

If one uses a Lyapunov vector function approach, one needs to use the Lya- 
punov function: V(x) = IIxl[, combined with a technique of Tokumaru et al. [175] 
(see also [38] and the references therein). 

Remark 27. This condition (5.27) is only sufficient, and special interest has been 
paid to reduce its conservativness (see the paragraph dedicated to Mori and 
Kokame criterion). 

Extension for the a-stability case can be found in [125], and the correspond- 
ing stability condition is: 

#(A) + llAdlle ~ + a < O. 

Some improvements of this result using different ideas can be found in [19, 76]. 
Notice that all these results can be easily extended to the multiple delays 

case; using the technique described in the previous paragraphs for obtaining 
delay-dependent type results, this idea can be used also in this framework. For 
the sake of brevity, we detail only the time-varying delay case, which allows to 
recover completely the constant delay case. 

Time-varying delays For the sake of simplicity, we consider here only the 
single delay case. The multiple delays case is treated in [136]. A different tech- 
nique from the one presented here can be found in [104] (delay-independent type 
results). If the delay is constant, one recovers similar results from the literature 
(see [193] and the references therein). 

Let us consider the triplet S = (A, Ad,T(t)), where r(t) is a continuous 
function with bounded derivative. Introduce now the following system: 

~l(t) = --OAy(t) + q(t)y(t -- v(t)), (5.28) 

where 

l do) q(t) = rlA -- - ~  exp --a -r(O f(Oi " 
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A direct verification shows that 

y(t)  = Co exp - ,~ 

where Co is a real constant, is a solution of (5.28). 
Using this scalar system in order to compare its solution with the solution 

of the triplet Z, we have the following result: 

P ropos i t i on  24 [157, 138] Consider the triplet S and assume that A is a Hur- 
witz stable matrix satisfying 

Il exp(At)  tl <_ kA "exp(--rlAt) (5.29) 

for some real numbers kA ~ 1 and rlA > O. I f  the following inequality 

' ~  II Ad 11 < 1 (5.30) 
r/A 

holds, then the transient response of x(t) satisfies 

I1 x(t)  It < M sup {1t ¢(0) ll}exp - a  , V t >__ 0 M > 1, 
o~,~o 

where a > 0 is the unique positive solution of the transcendental equation 

a _ kA H A d l l e x p (  ~ ) 
1 FAT(O) ~a ~ . (5.31) 

u 
Furthermore, the triplet S is exponentially stable with a decay rate - .  

Using some basic results on matrix measures [42], we have the following re- 
sult: 

Coro l la ry  1 Consider the triplet S and assume that A is a Hurwitz stable ma- 
trix. I f  the inequality 

# ( A ) +  11 Aa 11 < o 

o" 
holds, then the triplet ~ is exponentially stable with a decay rate :-, where a > 0 

r 
is the unique positive solution of the transcendental equation 

#(A) + r - -~+  It Aa II exp 1--=--o7 = 0. 

M-matrices The basic ideas can be summarized as follows: 
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- First, to introduce a comparison system which carl be, for example (single 
delay case, with a constant delay), of the form: 

y(t) = My(t) + N y ( t -  v), 

with some appropriate matrices M and N computed starting from the orig- 
inal triplet E. 

- Second, to test if the matrix M + N is the "opposed" form of an M-matrix s. 

In terms of Lyapunov vector functions, one uses (see also [37, 38, 62, 61] and the 
references therein): 

v(z) 
Xl 

Xn 

, x E I R  n. 

Other references, and further remarks on this technique are given in the chapter 
10 due to Richard et al. 

6 Other Stability Results  and Remarks  

Although our interest is focused on stability criteria when the delay system is 
interpreted as a functional differential equation, we do not want to end this part 
without mentioning how other interpretations of delay systems can cope with 
the "delay-independent / delay-dependenC stability presented before. 

Since "delay-independent / delay-dependent" stability is not the only prob- 
lem treated in the delay system control literature, we briefly mention also other 
problems, techniques, and remarks on different topics. 

A special attention has been paid to the complexity of stability problems 
involving multiple delays which are not commensurable. 

6.1 Var ious  i n t e r p r e t a t i o n s  of  de lay  s y s t e m s  

Without loss of generality, we consider the following cases: 

Di f fe ren t i a l  E q u a t i o n s  over  R ings  The basic idea of this approach is to 
rewrite the system (1.1) using the translation operator, and to interpret (1.1) as 
a differential equation on the ring ~[z]. For exemplification, let us consider the 
single delay case: 

2(t) = Ax(t) + Adx(t-- v). (6.1) 

s A matrix D is called an M-matrix if the elements on the diagonal are non-positive, 
the matrix D is not singular, and furthermore, all the elements of D -1 axe non- 
negative. 
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The translation operator Dr, defined by: D~f(t)  = f ( t  - T), allows to rewrite 
the considered system as: 

2(t) = F(79~)x(t)~ (6.2) 

where F(79r) = A + Dr is an operator acting on the evolution "x(tg)" for 0 E 
[--T, 13] of the system. 

To equation (6.2), we can associate the differential equation on the ring lR[z] 
(see also [86]) given by: 

ic(t) = F(z)x( t ) .  (6.3) 

Some connections between the characteristic equation associated to (6.3) and 
(6.1) are given in [86, 87, 88]. The delay-independent criterion given in [71] can 
be seen also in this framework. 

Without discussing all the possible interpretations, we cite the delay-indepen- 
dent stability condition given in [22], where the delay-independent stability prop- 
erty is reduced to the existence of a hermitian and positive-definite solution to 
a complex Lyapunov equation. 

2 - -  D Equat ions  The basic idea of the approach is to rewrite the differential 
equations associated to the system as a 2 - D equation. Thus, for the scalar case: 
the corresponding functional differential equation 

~(t) = - a x ( t ) -  b x ( t -  T), 

can be rewritten as: 

x (t) = - b - a  " x 2 ( t )  ' 

which combines an "ordinary" differential equation and a '~functional equation". 
Sufficient delay-independent stability conditions expressed in terms of 2-D Lya- 
punov equations have been given in [2]. Other criteria have been considered 
in [32], etc. 

Ma t r ix  Charac te r i s t i c  Equa t ion  Approach  The basic idea of this approach 
is to transform the functional differential equation associated to the system (1.1) 
into an ordinary differential equation via an appropriate linear transformation. 
Thus, for the single delay system case (6.1), the transformation is: 

F z(t) = T ~ x t  = x(t) + e-A'~(°+t) Aax(t  + O)d~, (6.5) 
7" 

where the matrix Amc satisfies the characteristic matrix equation: 

Amc = A + e-A'~°rA d. (6.6) 
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The corresponding linear system is: 

~(t) = Amcz(t). (6.7) 

Notice that the equation (6.6) is a transcendental matrix equation and it is hard 
to use it for "delay-independent / delay-dependent" type results. However, we 
can mention the algorithms for computing the "corresponding" Amc matrix given 
in [49, 205]. 

6.2 On the  complex i ty  of  mult iple  delays s tabi l i ty  p rob lems  

We have shown in the previous paragraphs that it was possible to solve the 
"delay-independent / delay-dependent" stability problems in polynomial time 
for a class of linear systems with commensurable delays. 

The following natural question arises: Does the same property hold/or the 
multiple delays case? Unfortunately, the answer is negative. Recently, a paper 
of Toker and Ozbay [174] has proved that such problems are A/P-hard using 
the A/P-hardness of complex bilinear programming over the' unit polydisk. Def- 
initions for A/P-hardness can be found in [55] and the references therein; other 
AlP-hard problems arising in robust control theory are presented in [132]. 

In conclusion, it is rather unlikely to find efficient procedures (of polynomial- 
time type) for such problems in the general case. However, we should point out 
that better approximation schemes can be thought of to improve the "sufficient" 
(relatively simple) "delay-independent / delay-dependent" conditions presented 
above. 

6.3 Othe r  s tabi l i ty  p rob lems  

We have considered in this section only stability results expressed in terms of 
their robustness with respect to the "delay", viewed as a ]ree parameter, in 
several different cases: time-varying or constant delays, commensurable (similar 
to single case) or non commensurable delays. The analysis has been given under 
the hypothesis of the asymptotic stability of the system free of delay. 

This situation is not the only one which can be considered. Thus, we have 
mentioned the delay-interval stability analysis (matrix pencil framework) for 
linear systems with commensurable delays. Another problem consists in analyz- 
ing the relationships between the commensurable delays and the multiple delays 
(constant, but independent) stability cases (see [108]). Generally, it is clear that, 
if the system involving the delays as "independent" parameter is asymptotically 
stable, then also the commensurable delays stability case problem presented be- 
fore is guaranteed. The question is if this condition is also necessary. The answer 
is positive in some cases, and we do not consider them here. 

Another problem is to analyze if, in the delay-dependent stability case (always 
for commensurable delays), the stability region thus obtained is the only existing 
one. The examples given in [1] or in [71] prove that one can have a sequence 
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stability / instability / stability for non scalar systems. Some remarks on this 
kind of problems have been considered in [140]. 

O t h e r  r emarks  In the previous paragraphs, we have considered stability 
issues for some classes of linear systems with delayed state, using particular forms 
for the Lyapunov-Krasovskii functionals or Lyapunov-Razumikhin functions. 

Other constructing methods for Lyapunov-Krasovskii functionals have been 
proposed in [83] (constant delays), or in [107] (extension to time-varying delays). 
The main advantage of such methods is that the corresponding conditions are 
closed to "necessary and sufficient" conditions, but they do not aUow to easily 
handle numerical examples. We should point out also the constructing method 
due to Barnea [7], not only for the stability test, but also for instability. 

In this sense, one can mention also the extension of the classical Lyapunov 
equation theory to the case of linear differential equations of delayed type [82] 
(see also [70]). 

Other interesting stability criteria consist in computing the optimal size of 
the delay which ensures the stability of the closed-loop system: 

H(s) = Ho(s)e -'~, r > O, 

where H0(s) corresponds to the nominal transfer function ("non-delayed"), and 
the delayed term can be seen as an uncertainty one. For this problem, we want 
to mention the approach proposed in [43] (a sub-optimal bound on the delay size 
using a modified form of the classical Nevalinna-Pick interpolation theory basic 
results). A partial solution to the problem can be also found in [46]. 

And last, another stability necessary and sufficient condition to compute the 
optimal bound on the delay-size in the Sr case is given in [169] in terms of the 
eigenvalues distribution of some appropriate "large" matrices. 

We did deliberately not consider all these approaches here to guarantee the 
unity and simplicity of the presented materials. 

7 Robust  Stability 

This section is devoted to the stability analysis results for uncertain delay systems 
in (~U, 7), ~) representation. Some of the results presented here can be obtained as 
simple extensions of the "nominal" cases treated before. In some cases, we have 
not detailed the existing results, since some of the next chapters handle such 
problems. The structure of the section follows the nominal case description, 
but with the particularity that we have tried to present various uncertainty 
representations. In this sense, each paragraph uses a different (7:), ~) uncertainty 
description. 
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7.1 F requency-Domain  Approach  

Quas ipo lynomia l s  R o b u s t n e s s  We shall start by considering a quasipolyno- 
mial family with nd commensurable delays described by (see also Kogan [91]): 

l ?~2 *rid t Q = q(s,5,7) = E t 15'ske-S~" k,~ j 5 ~ 7 ) ,v  ~ [r,~] , (7.1) 
k,l=O 

where 7) is a compact and convex subset of C (m+l)×(m+l) and t~j(5) are con- 
tinuous (complex or real valued) functions of 5. 

A basic result for such a quasipolynomial family is the following zero exclusion 
criterion, which can be summarized as follows: 

P ropos i t i on  25 (Zero exclusion cr i ter ion)  If  there 
exist two couples (do,7o) and (dl~T1) such that q(s, do,~'o) and q(s,dl,T1) are 
stable and respectively unstable quasipolynomials, then there exist a couple ( d, 7) 
and an w E IR, such that the quasipolynomial q(s, d, T) satisfies the condition: 

q(jw, d,v) = 0. (7.2) 

Othe r  remarks .  Fu et al. [53] have extended the Edge theorem (see also the 
paper of Bartlett, Hollot and Lin [8]) to quasipolynomials family with constant 
delays and coefficients depending affinely on parameters. A different result has 
been proposed in [6] for a quasip01ynomial family with interval delays. Tsypkin 
and Fu [178] have proposed a graphical test for quasipolynomial family with 
an interval delay. A different approach based on convex directions has been 
considered by Kharitonov and Zabko [90]. Algorithms as well as further results 
on convex approach for stability analysis of such kinds of quasipolynomials can 
be found in [91]. 

Delay-independent stability results for interval-quasipolynomiat (the coeffi- 
cients are inside some specified intervals, etc.) with constant delays are given 
in [149]. Delay-independent and delay-dependent stability conditions for the com- 
mensurable as well as for non-commensurable delays cases are given in [78]. 
Boese [17] derived necessary and sufficient stability conditions for quasipolyno- 
mials with interval coefficients and one interval delay. Other robust stability 
results are given in [77]. 

Special  cr i ter ia  In this class, we shall consider only the maximum principle 
type extensions (in all the parameter sets). 

M a x i m u m  Pr inciple  Based  Approach  In this class, one considers the 
Mori and Kokame criterion extensions and the structured singular value tech- 
niques: 
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- Mori and Kokame criterion [126] extensions. Consider now the triplet Zr 
associated to the system (single delay case): 

it(t) = (A + AA)x(t) + (Ad + AAd)x(t - r), (7.3) 

with AA and AAd time-invariant uncertainty satisfying the following bound- 
ness condition: 

HAA[] < ~, I]AAd[I < ~d. (7.4) 

The basic idea is to verify the inequality: 

#(A + Ade-s~) + fl +,6d < 0 

on the boundary of a given compact in ¢+. If this inequality holds, then the 
robust stability property holds (see, for example, [171]). 

- Structured singular value techniques. Consider the triplet Zr described by 
(7.3) and suppose that: 

-5(AA) < %, ~(AA~) < 7d 

Introduce now the following sets (see also [27]): 

y , ( 7 )  = : e < 7} 
Zp(?) = {diag(A1,A2) : A1 E XI(V),A2 E Yp(V)} 

Then we have robust delay-independent stability of the triplet Zr if: 

and 

where 

# y l ( % ( J w I ~ - A )  -1) < 1, w e i r  +, 

#z2(.M(jw)) < 1, w e ~+,  

M(s) 
(sin - A)-IAd (sin - A) -1 

= -Taln 0 
%(sI,~ - A) - 1 % ( s I .  - A) -1 

For further comments, see [27]. 

7.2 T i m e - D o m a i n  Approach  

(Sin -- A) -1 ] 
0 ] 

% ( s I ~  - A) -1 

Similarly to the nominal case, we consider here the Lyapunov's second method via 
Lyapunov-Krasovskii and Lyapunov-Razumikhin techniques and the comparison 
principle methods (only in the matrix measure framework), respectively. 
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Lyapunov ' s  Second M e t h o d  Consider now the triplet Sr = (Z, D, ~) de- 
scribed by the following functional differential equation: 

nd 

2(t) = [A + AA(t)]x(t) + ~ [ A d i  + AAdi(t)]x(t -- vi), (7.5) 
i : 1  

where AA(t) and AAdi(t) (i = 1--,-~) are time-varying and norm-bounded uncer- 
tainties satisfying: 

AA(t) = DaFa(t)Ea, Da 6 lR n×m°, Ea e IR n°×", 

AAai(t) = DdiFdi(t)Edi, Ddi 6 IR n×ma', Edi 6 ][~na,×n, 
Fad(t) e (i = 

(7.6) 

where F~(t) and Fdi(t) are the uncertain matrices for the 'actual' state x(t) and 
for the 'delayed' state x(t - Ti) respectively and Da, Ddi, Ea, Edi i = 1, nd are 
known real matrices which characterize how the unknown parameters in Fa(t) 
and Fdi(t) enter the nominal matrices A and Adi respectively. 

Fa(t),Fdi(t) E 9 r = {F(t) : F(t)TF(t) <_ I}. 

(where the elements of F(t) are supposed Lebesgue measurable). 
For the sake of simplicity, the following results correspond to the case when 

we have no uncertainty on the matrices Adi, i -- 1,rid, i.e. AAdi = O. 
Since the ideas are completely similar to the nominal case, via the same 

Lyapunov-Krasovskii and Lyapunov-Razumikhin forms, we shall present only 
two simple extensions: robust delay-independent stability using a Lyapunov- 
Krasovskii approach and robust delay-dependent stability via a Lyapunov-Razu- 
mikhin approach, respectively, for the single delay case. The results can be sum- 
marized as follows: 

P r o p o s i t i o n  26 Assume that the pair (A, Ad) satisfies Assumption 1 (A + Ad 
Hurwitz stable). Then the triplet Zr = (Z ,D,~)  (7.5)-(7.6) (with Dd = O, 
Ed = O) is delay-independent robustly stable if one the following assertions holds: 

(i) there exists a couple of symmetric and positive definite matrices P > 0 and 
S > 0 satisfying the following Riccati inequality: 

T A T p  + PA  + P[AdS-1Aff + DaDT]p + E~ E~ + S < O. 

(ii) there exists a couple of symmetric and positive definite matrices P > 0 and 
S > 0 satisfying the following LMI: 

A T p  + PA + ETEa + S PAa PDa 7 
A T p  - S  0 
D T p  0 -I,n~ 

< O. 
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The proof makes use of the same Lyapunov-Krasovskii functional: 

V(xt) = x(t)Tpx(t)  + x(t + o)TSx(t + O)dO, 
7" 

The general delay-independent cases can be found in [198] (Riccati equation 
approach using a similar Lyapunov-Krasovskii functional with P > 0 and S = 
In) or in [137] (Riccati equation approach for time-varying delays). 

P r o p o s i t i o n  27 Assume that the pair (A, Ad) satisfies Assumption 1. Then the 
triplet Sr  = (S,79,~) (7.5)-(7.6) (with Dd = O, Ed = O) with r(t) E ])(T*) is 
uniformly asymptotically stable if there exist a symmetric and positive definite 
matrix P > 0 and scalars e > O, 81 > 0 and 82 > 0 satisfying the following 
LMIs: 

(A + Ad)Tp + P(A + Ad)+ 

+ETEa + ? - -  DaDT + ) PDa 

+r*(~l + ~2)P 
D T p  -Imo 

7*QTATp 0 

T*PAdQ 
< O, (7.7) 

0 

- > P O, 

where 

Q = [A Ad DaA], 

[.o of 7~ = 0 /~2P 0 . (7.8) 
0 0 P - cETEa 

Remark 28. The computation of the suboptimal bound T* on the delay size can 
be reduced to a standard LMI optimization problem (see the stability results 
section). 

The general delay-dependent cases can be found in [134] (a Riccati equa- 
tion approach using an appropriate Lyapunov-Krasovskii functional; single delay 
case), [135] (the same approach for multiple delays case, i.e. bounded sets) [196] 
(an LMI approach based on a Lyapunov-Krasovskii functional) or [197] (an LMI 
approach via a Razumikhin type technique). Delay:dependent results (single de- 
lay case) can be also found in [170] (see also [199]) or in [167] (Razumikhin type 
technique, different uncertainty representations). 

C o m p a r i s o n  Pr inc ip le  Using the "classical" scheme for this section, we shall 
start by introducing a "new" class of time-varying uncertainty. Consider now 
the following 22r triplet described by the functional differential equation: 

1~6d n d 

2(t) = Ax(t) + E Adix(t -- Ti) + f (x( t ) , t )  + E f d , ( x ( t  -- ~'/),t), (7.9) 
/=--1 i----1 
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where f(x(t),  t) and fai(x(t -Ti) ,  t) (i = 1-'--,~) are non-linear, continuous and 
time-varying uncertainty, satisfying the following boundedness condition: there 
exist non-negative numbers/3 and/3di, i = 1, na, such that  for all x E JR n and 
for all t: 

tl f(x,t) t1</3 tt x li 

II f a i ( x , t )  I1_</3a~ II x II, i = 1, rid. 
(7.10) 

Simple computations allow to define the corresponding 79 and 4~ respectively 
in order to define the triplet Zr = (E, 79, ~). It is necessary to assume that  the 
corresponding time-varying functional differential equation is well-defined, etc. 

In the sequel we shall present results concerning the robust exponential sta- 
bility of S t ,  using a matrix measure based comparison principle method. In fact, 
for the brevity of the paper, we consider only the time-varying single delay case. 
The results can be summarized as follows: 

P r o p o s i t i o n  28 Consider the triplet S t ,  and assume that A is a Hurwitz stable 
matrix satisfying 

It exp(At) II .<- kA " exP(--~TAt) 

for some real numbers kA > 1 and OA > O. If the inequality 

kA(ll Zd II +/3 +/3a) < I (7.11) 
T/A 

holds then, the transient response of x(t) satisfies 

I1 x( t )  II <-- M sup {11 ¢(0) II} exp  - a  
OE£o 

V t > 0 ,  M > I ,  (7.12) 

where a > 0 is the unique positive solution of the transcendental equation 

1--k_AA/3 a kA (11Ad II +/3d)exp [ | a ~ ] (7.13) 
UA Uar(0) ~A \ l ---S-d/" 

Remark29. When there axe no uncertainties, i.e./3 = 0 and/3d = 0, we recover 
Proposition 24. Using the measure of the matrix A by letting kA = 1 and r/A = 
-#(A) ,  we can easily rewrite Proposition 28, similarly to Corollary 1. 

Remark 30. The technique used to prove this result is similar to the one described 
in the previous section dedicated to stability result, but it uses a different system 
for comparison: 

y( t )  = --(~A -- kA/3)y( t )  + q ( t ) y ( t  - ~(t)  ), (7.14) 
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where 

q(t) = ~A -- karl -- a exp --a 
r(t) 
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P r o p o s i t i o n  29 Consider the triplet Zr and assume that A + Ad is a Hurwitz 
stable matrix satisfying 

II exp((A + Ad)t) l[ ~-- k exp(-~t) (7.15) 

for some real numbers k > 1 and ~ > O. If the inequality 

~['Y(tl H + H H + II H r+ H Ad ]l rd) -]- ~ -~- rd] < (7.16) AaA Ad 2 Ad 1 

holds then, the transient response of x(t) satisfies 

[] x(t) [[ _< M sup {[1 ¢(0) [[}exp - a  
OE£o 

Vt_>O, M_>I ,  (7.17) 

where a > 0 is the unique positive solution of the transcendental equation 

1 -  k ~T(O)a = ~exp ( a ) [~ [[ AdA a 

+ l[ Ad [I r )  + rd -[- "F(I[ A~ l[ + 11 Ad II rd) exp ~ - a  " (7.18) 

7.3 O t h e r  R e m a r k s  

In this section, we have considered the delay-independent / delay-dependent sta- 
bility results in the case when some restrictions have been imposed on the uncer- 
tainties. A different problem of interest consists in computing some bounds (in 
the sense "maximal allowable") for the uncertainty such that the corresponding 
property (robust delay-independent or delay-dependent) still holds. 

For example, consider now the following system: 

}(t) = Ax(t) + f a ( x ( t -  r),t), (7.19) 

For the delay-dependent case, one has the following result: 

Simple verifications show that the corresponding solution is 

= C o e x p  

where Co is a real constant. If r = 0, one obtains the same comparison system 
form as in the case without uncertainty (5.28). 
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where fd is a continuous time-varying and nonlinear function satisfying: 

ttfd(x,t)ll <_ /~dllxll, x E IR n. (7.20) 

The robust stability problem which can be considered consists in computing 
the maximal bound o n  ]~d, such that the system (7.19) is robustly stable. Such 
problems have been considered in [195] (comparison principle techniques), [30] 
(Razumikhin based approach), and in [177] (Lyapunov-Krasovskii functionals). 

For a particular form of uncertainty, real and complex stability radii have 
been proposed in [176] using an infinite-dimensional representation of the con- 
sidered system. Other results and comments on robust stability problems can be 
found in [133]. 

8 The Examples  Revis i ted  

In the previous sections we have presented several analyzing techniques for delay- 
independent / delay-dependent stability for systems including delayed state. Here 
we are interested to apply some of them to the study of local asymptotic stability 
properties for the examples considered in Section 2. 

8.1 Chemica l  Example  

Consider the nonlinear delay system (2.1), whose linearization around the sta- 
tionnary point xs = [As Ts] T is given by: 

~(t) = Ax(t) + A d x ( t -  v), (8.1) 

where x(t) = [A(t) T(t)] T and the matrices A and Ad are: 

/ A = 

Ad 

_-9- KoQAse-  ~ 
q Koe ~, V T 2 

s 

( -AH)QKoAse_  ~ q ( -AH)QKoA~ _ Q  U 
Cp V T2Cp VCp 

[qo=,~) o ] v 

0 qO-~) " V 

(8.2) 

We have the following result: 

P ropos i t ion  30 [142] If the tinearized system (8.1) without delay is asymptot- 
ically stable, then it is 8oo asymptotically stable. Furthermore if the delay r(t) 
is a time-varying function in the V(r) class, then the linearized system is Sv,r 
uniformly asymptotically stable. 

In conclusion, the system (2.1) is delay-independent locally asymptotically 
stable. 
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Proof: Since the system without delay is asymptotically stable, it follows 
that there exists a symmetric and positive definite matrix P such that: 

(A + Ad)Tp + P(A + Ad) < 0. (8.3) 

Since Ad = 2ti2,  with t - q(1 V "~) , the condition (8.3) can be rewritten as: 

A T p  + PA  + tiP PAd ] 
AT P _ t i p  < O, 

which is the LMI form of the Riccati inequality (5.16), and thus the property 
follows via Proposition 18. 

Remark 31. Another method to prove the result is based on the matrix measure 
property presented in Section 4. Indeed, due to the particular structure of the 
matrices A and Ad, the stability property of the system without delay implies 
that: 

#(A) +llAdll < 0, 

and thus the stability property follows. 

Remark 32. The constant delay case has been proved in [103] via a frequency- 
based technique. The same result can be obtained using the matrix pencil tech- 
nique presented in Section 4 (see also [133]). 

8.2 Neural Network Example  

B61air [9] considers a particulary structure for the delay neural network (2.2), 
i.e. of the form: 

n 

2i(t) = -x i ( t )  + E aijtanh [xj (t - ~-)], 1 < i < n. (8.4) 
j = l  

In order to analyze local stability properties for such systems, consider its lin- 
earization around 0, i.e. of the form: 

&(t) = -x( t )  + A a x ( t -  T), (8.5) 

where the matrix Ad is given by: 

d(tanh(s)) 
Ad = fl[aij]l<_~,j<_,~, f l=  ds (0). 

Only for simplification, suppose now that the matrix Ad has real eigenvalues dj, 
j = 1, n. Then we have the following result: 

P r o p o s i t i o n  31 [143] Consider the system (8.5) satisfying the hypothesis given 
above. Let Z be the associated triple. Then the following assertions hold: 
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i) Z is $ ~  asymptotically stable if and only if the eigenvalues dj E [-1, 1) for 
all j = 1, n. 

ii) Z is Sr asymptotically stable if and only the eigenvalues dj < 1 for all 
j = 1,n, but there exists at least one eigenvalue djl, 1 < j l  < n, such that 
djl < -1.  
In this case, the optimal bound on the delay size is given by: 

1 
arccos(-~j ) 

~-* = rain - , (8.6) 
1Sj--<n vd~32. - 1 

where we consider only the eigenvalues dj satisfying the condition dj ( -1 .  

The proof can be given using the matrix pencil techniques presented in Sec- 
tion 4, after some algebraic manipulations (particular structure for A = - In ,  
and real eigenvalues for Ad, etc.). 

Remark33. The results are similar to the one given in [9] using a different 
frequency-based technique, but without taking into account the "limit" B~ case 
(i.e. corresponding to dj = -1) .  Other comments are given in [133]. Notice that 
dj E (-1,  1) is equivalent to the strong delay-independent stability result. 

9 Concluding Remarks 

In this chapter, some topics on time-delay systems stability and robust stability 
have been considered. The delay systems are described by linear differential 
equations with delayed state including a single or multiple delays, constant or 
time-varying. Furthermore, state uncertainty may be present. A specific problem 
has been considered throughout the chapter: The influence of the delay size 
on the asymptotic stability (robust stability) property, i.e. delay-independent or 
delay-dependent. Some algebraic tools have been considered in detail, other tools 
have been only mentioned in order to reduce the "overlap" with other chapters 
of this monography. The intention of the authors was not only to classify existing 
results (and the corresponding methods), but also to present some trends in this 
field. 

Using similar ideas we can analyze the stabilization problem in terms of 
the closed-loop system "delay-independent / delay-dependent" stability. Such 
studies have been considered in [133], where memoryless feedback laws have 
been used. Some prescriptive stabilization methods were presented in [52] and 
[183], for the more general deterministic and stochastic case. See also Lehman 
et al. [105] for a different technique. Other remarks and comments on the stabi- 
lization problem and related topics can be found in the next chapters. 
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A Stability theory 

This appendix recalls the basic notions and definitions used in the Lyapunov 
second method for functional differential equations. 

A.1 Basic definit ions 

Consider the functional differential equation of retarded type 

( ~(t)=f(t, xt), t~to 
X,o(O) = ¢(0), VO e [-~',0] (A.~) 

where xt(-), for a given t _> to, denotes the restriction of x(.) to the interval 
[t - % t] translated to [--T, 0], i.e. 

x~(O) =x(t+o), v o  e [-~-,o]. 

It is assumed that ¢ E Cv,T and the map f ( t ,  ¢) : ]R + x C~,~ ~ IR n is continuous 
and Lipschitzian in ¢ and f ( t ,  O) = O. 

Let us denote by x(to, ¢) the solution of the functional differential equation 
(A.1) with the initial condition (to, ¢) E ]R + x Cv,T. 

Def ini t ion 1 The trivial solution x(t) - 0 of (A.1) is said to be 'uniformly 
asymptotically stable' if: 

(a) for every ~ > 0 and for every to > 0 there exists a ~ = ~(~) independent of 
to such that for any ¢ E C~n,r the solution x(to, ¢) of (A.1) satisfies xt(to, ¢) E 
C~, r for all t > to; 

(b) for every rl > 0 and for every to >_ 0 there exist a T(~) independent of to 
and a Vo > 0 independent o[ ~ and to such that for any ¢ E Cn,r , II¢ IIc< vo 
implies that II xt(to,¢) lie< r~, v t  _> to +T(~).  

(2) The trivial solution x(t)  =_ 0 of (A.1) is said to be 'exponentially stable' if 
there exist a B > 0 and an a > 0 such that for all initial conditions ¢ E C v 
tithe < vo < v, the solution satisfies the inequality: 

Ilx(to,¢)(t)ll ~< Be-~(t-t°)ll¢llc. 
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We recall that condition (a) implies uniform stability. Furthermore, if the 
system is linear, the 'uniform asymptotic stability' property is equivalent to the 
'asymptotic stability' or to the 'exponential stability' property [93]. 

Consider now the case of a linear autonomous and homogeneous equations: 

&(t) = L(xt) ,  (A.2) 

where the functional L : Cn,r ~ IR n is continuous. In order to simplify the 
presentation, we shall focus on the linear systems (with finite point delays) of 
the form: 

&(t) = Ax(t)  + E Aix(t  - Ti). (A.3) 

We have the following definitions: 

Defini t ion 6. [165] The function Y : C ~+ ¢ given by: 

Y(A) = det M n -  A -  Aie -~r~ , (A.4) 
i=1 / 

is called the characteristic function corresponding to the linear system (A.3). 

Defini t ion T. [165] The characteristic function Y given in Definition (6) is 
called stable if the following condition holds: 

{A e ¢ : Re(A) >_O, Y ( A ) = O }  = 0. (A.5) 

In the case of ordinary differential equations the stability of the characteristic 
function is equivalent to the exponential stability of the trivial solution. The 
same property holds for the case considered here, but it is not true for general 
functional differential equations (one needs supplimentary assumptions if the 
system has infinite delays, etc.; see [165] and the references therein). 

A.2 Lyapunov~s second m e t h o d  

As we have mentioned before, there are two different ways to develop Lyapunov's 
second method type results, function on the way of interpreting the solution of 
the considered functional differential equation, as an evolution in a function 
space (Lyapunov-Krasovskii functional) or as an evolution in an Euclidian space 
(Lyapunov-Razumikhin function). 

We have the following results: 

T h e o r e m  3 (Krasovskii  Stabi l i ty  Theorem)  [70] Suppose that the function 
f : ]I~ × Cn,r ~ IRa takes bounded sets of Cn,r in bounded sets of ]R n and 
suppose that u(s), v(s) and w(s) are continuous, nonnegative and nondecreasing 
functions with u(s), v(s) > 0 for s # 0 and u(O) = v(O) = O. 

If  there is a continuous function V : ]R × Cn,r ~-~ IR such that 
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(i) u(ll¢(O)ll) < v(t ,  ¢) < v(ll¢llc), 
5i) ?(t ,¢) < -w(ll¢(O)ll) 

then the solution x = 0 of the equation (A.1) is uniformly stable. 
I f  u(s) ~ c~ as s ~ ~ the solutions are uniformly bounded. 
I f  w(s)  > 0 for s > O, then the solution x = 0 is uniformly asymptotically 

stable. 

T h e o r e m  4 ( R a z u m i k h i n  S t ab i l i t y  T h e o r e m )  [70] Consider the.functional 
differential, equation (A.1). Suppose u, v, w, p : ]R + ~-~ ]R + are continuous, 
nondecreasing functions, u(s), v(s), w(s) positive ]or s > O, u(O) = v(O) = 0 
and p(s) > s / o r  s > O. If  there is a continuous/unction V : ]l=t x ]R n :~-~ ]It 
such that 

(a) u(tl x I1) -< v(t,  z) <_ v(ll ~ 11), t e ~ ,  z ~ ~'~ 
(b) ~/(t,x(t)) < -w(I I x(t) 11) i]V(t+8,x(t+~)) < p(V(t,x(t))), V6 e [--T,O] 

Then, the trivial solution of (A.1) is uniformly asymptotically stable. 
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A b s t r a c t .  The purpose of this chapter is to give a survey of recent 
results on convex directions for the sets of stable polynomials and 
quasipolynomials. It presents a number of analytic criteria ensuring Hur- 
witz and Schur stability of segments of polynomials. Convex directions 
are characterized in terms of root loci and it is shown that these root loci 
behave differently in the real and the complex case. The convex direction 
problem for sets of stable quasipolynomials is also discussed. Applying 
similar methods as in the polynomial case analytic stability criteria are 
obtained for segments of quasipolynomials of delay and of neutral type. 

1 I n t r o d u c t i o n  

In recent years robust stability analysis of systems with uncertain parameters 
has received a good deal of attention, see e.g. [3], [5] and the references therein. 
A time-invariant linear difference, differential or differential-difference system 
is exponentially stable if and only if the associated characteristic polynomial 
(quasipolynomial) is stable. For systems with uncertain parameters this leads 
to the robust stability problem of checking the stability of sets of polynomials or 
quasipolynomials. 

Many problems of robust stability can be reduced to the problem of ascer- 
taining the stability of a polytope of polynomials or quasipolynomials (i.e. the 
stability of all the (quasi-)polynomials contained in the polytope). By the Edge 
Theorem (see [10], [12]) this problem can be reduced to the problem of checking 
the stability of a segment of polynomials (or quasipolynomials). The Edge The- 
orem states that  a polytope H of polynomials or quasipolynomials is stable if 
and only if all the edges of H are stable. A further reduction of the problem is 
obtained if the directions defined by the edges are convex directions. Intuitively 
speaking, a (quasi-) polynomial q is a convex direction if the set of stable (quasi-) 
polynomials behaves like a convex set in the direction of q. Hence if all the edges 
of H are convex directions the stability of the vertices o f / / a l o n e  ensures the 
stability of the whole potytope of polynomials (quasipolynomials). This explains 
why the study of convex directions is of importance for robust stability analysis. 

.72 



Time-delay Systems 73 

However, it is also of independent theoretical interest regarding the geometry of 
stable polynomials and quasipolynomials. 

The first characterization of convex directions was given by Rantzer in [20]. 
More precisely, Rantzer's condition characterizes the polynomials q having the 
property that for all (Hurwitz or Schur) stable polynomials p with degp > deg q, 
the stability of p + q implies the stability of the whole segment [p, p + q]. Some 
special classes of convex directions have been identified in [13] and [19]. An 
attempt to describe the whole set of these polynomials has been made in [14] 
where some algebraic conditions were derived. A new characterization of convex 
directions for real po!ynomiais in terms of root loci was presented in [16]. This 
characterization has led to a new concept of convex direction for a given Hurwitz 
polynomial which can be characterized by a graphical test [16]. 

Some of the stability results for polynomials admit a natural extension to 
quasipolynomials. Convex directions for Hurwitz stable quasipolynomials of de- 
lay and of neutral type were introduced and characterized in [18]. The root loci 
approach of [16] was extended to the the stability analysis of segments of real 
quasipolynomiais in [1]. 

Another promising area of application for the concept of convex directions 
is the stability theory of multivariable polynomials and quasipolynomials [7], 
[4], [9]. Multivariable polynomials play an important role in stability analysis of 
passive multidimensional systems which are used e.g. in image processing [6]. In 
order to extend the convex direction concept to the case of multivariable poly- 
nomials and quasipolynomials one needs characterizations of convex directions 
for complex polynomials and quasipolynomials [2]. 

The purpose of this chapter is to give an up to date survey of published 
and unpublished results concerning stable convex directions for polynomials and 
quasip01ynomials (in one variable). For proofs and further technical details we 
refer to the original papers. We will only present the proofs of unpublished 
results. 

The chapter is organized as follows. In Section 2 and 3 we formulate the 
convex direction problem for stable polynomials and quasipolynomials in the 
real and the complex cases. Moreover we describe the basic convex direction 
conditions given in [20] and [18]. Sections 4 and 5 deal with root loci charac- 
terizations of convex directions for stable polynomials and quasipolynomials. 
It is shown that in the complex case the root loci of the polynomial pencils 
po(z) +#q(z), # >_ 0 (Po stable, q a convex direction) never return to the stabil- 
ity region once they have left it. In the real case, however, there are holes in the 
stability boundary through which a root may return (Theorems 10, 11 and 16). 
The root loci characterizations in Sections 4 and 5 provide a basis for studying 
a weaker concept of convex direction which is less conservative than Rantzer's 
concept if a stable reference (quasi-) polynomial is given. The associated mod- 
ified convex direction problem is briefly discussed at the end of Sections 4 and 
5. 
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2 Convex Directions for Stable Polynomials 

For n >_ 1 let Pn(IK) denote the (n + 1)-dimensional vector space of polynomials 
of degree at most n with coefficients in the field ]K, i.e. 

7~n(IK) := p;  p(z) = akz k ,  ak E ]K . (2.1) 
k=O 

Throughout the chapter we suppose that lK = ]R or lK = C. 
Let C = Cg 0 Cb be a given nontrivial partition of the complex plane C into 

a "good" and a "bad" region, where the '~good" region C~ is assumed to be open. 
A non-constant polynomial is called C a-stable if all its roots belong to the "good" 
region Ca. Sn(IK, Ca) denotes the set of all Ca-stable polynomials of degree n 
with coefficients in ]K. Thus Sn(]K, Ca) C Pn(]K) \ Pn-I(]K). Throughout this 
chapter we assume n > 2. 

The set Sn(lK, Ca) is a non-convex cone. However, in some directions it be- 
haves like a convex set. The following definition is due to Rantzer. 

Definition 1. A polynomial q E P n - I ( ~ )  is called a convex direction for the 
set Sn (]K, Ca) if, for all the polynomials p E Sn (lK, C a), the Ca-stability of p + q 
implies the Ca-stability of the segment ~9, p + q] = {p + #q ; # E [0, 1] ), i.e. if q 
satisfies 

p , p + q E $ n ( ] K ,  Cg) ~ ~ , p + q ] C S n ( ~ , C a ) .  

for all p E Sn(]K, Ca). The set of all these convex directions will be denoted by 

Note that  convex directions for Sn(]K, Ca) are, by definition, of degree < n so 
that  all the polynomials in the segment ~,p+q] are of degree n. Since Sn(]K, Ca) 
is a cone one obtains the following simple consequence of Definition 1: 
A polynomial q E ~On-l(~) iS a convex direction if and only if, for every stable 
polynomial p E Sn(]K, Cg), the set 

MOp, q) = {# >_ 0; p + p q  E •(]K,  Cg)} (2.2) 

is an interval in lR+ = [0, co). In particular, the set of convex directions for 
Sn (IK, Ca) is itself a cone. 

Remark 1. Another way of expressing the preceding necessary and sufficient con- 
dition is: q E Pn-I(IK) is a convex direction for Sn(]K, Cg) if and only if the 
intersection of the ray Rip, q) = {P + #q; # >_ 0} with the set Sn(]K, Cg) is 
convex for all p E Sn(]K, Ca). Given a stable polynomial Po E Sn(]K, C9) we say 
that  q E Pn-I( iK) is a convex direction for Sn(]K, Ca) relative to po if 

p0 + #q E Sn(]K, Ca) =~ [Po,Po + #q] C ST~(IK, Ca) (2.3) 

holds for all # E lR+. In other words, if a point moving away from Po on 
the ray R(po,q) leaves the set Sn(]K, Cg) it never returns to this set. The set 
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:D,~_I(IK, @g;Po) of all convex directions for Sn(]K, Cg) relative to P0 depends 
not only on Sn(IK, @g) but also on the polynomial Po. The intersection of all 
these sets coincides with the set Z)n-1 (]K, @g) of convex directions in the sense 
of Definition 1. In other words, a convex direction in the sense of Definition 1 is 
a convex direction for the set Sn(IK, C9) relative to every point 19o • Sn(IK, @9)" 
In order to emphasize this we will sometimes call them global convex directions 
for Sn(IK, Cg). 
Note that in order to conclude the stability of a given segment [Po, P0 + #q] from 
the stability of the endpoints P0 and P0 + #q it suffices to know that q is a convex 
direction for Sn(]K, @9) relative to Po. It can be shown by examples, see [16], that 
the set Dn_x(lK, Cg;p0 ) of convex directions for Sn(IK, C9) relative to a given 
Po may be much larger than the set Z)n-1 (]I4, C9) of global convex directions for 

cg). 

In this chapter we restrict our considerations to the classical stability domains, 
namely the open complex left half-plane 

C _ = { z e C ;  R e z <  0} 

and the open complex unit disk 

C1 = {z • c ;  Izl < 1} .  

A non-constant polynomial p • 7~n(lK) is said to be Hurwitz stable or a Hurwitz 
polynomial if all its roots belong to @_; it is called Schur stable or a Schur 
polynomial if all its roots are contained in @1. Thus Sn(]K, @-) and Sn(]K, @1) 
are the sets of Hurwitz and of Schur polynomials, respectively, with coefficients 
in ]K. 

The following characterizations of convex directions for Hurwitz and Schur 
polynomials are due to Rantzer [20]. We first discuss the Hurwitz case. 

2.1 Convex  di rec t ions  for H u r w i t z  polynomials :  @g = @_ 

T h e o r e m  2 [20]. 
(i) A polynomial q • :Pn-l(@) is a convex direction for the set Sn(@, @_) if 

and only if the following inequalities hold: 

Oarg(q(zw)) < 0 co • {w • fit. q(zw) ~ 0}. (2.4) 
0 c o  - -  ~ 

(ii) A polynomial q • "P,~_I(IR) is a convex direction for the set Sn(IR,@_) if 
and only if the following inequalities hold: 

Oarg(q(zw))< ] sin(2 arg(q(zw))) t 
0w - 2w ' 

co • {w > 0;  q(zw) ~ 0} .(2.5) 
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It follows from (2.4) and (2.5) that if q E 79n-1 (]K) is a convex direction 
for the set Sn(IK, @-), then cq is also a convex direction, for arbitrary c E]K. 
In particular, if q is a convex direction for Sn(IK, @-) then also - q  is a convex 
direction for this set. Moreover, since the conditions (2.4) and (2.5) do not de- 
pend upon n, a convex direction q for Sn(IK, @-) is also a convex direction for 
Sn, (IK, @_), if deg q < n'. Finally, every real polynomial which is a convex direc- 
tion for Sn(•, @-) is also a convex direction for Sn(]R, @-). But, the converse 
is not true. 

Conditions (2.4) and (2.5) contrast with the following well-known phase in- 
creasing properties of complex and real Hurwitz polynomials which play an im- 
portant role in the proof of Theorem 2, see [20]. Note that these properties again 
do not depend upon the degree n > 2. 

T h e o r e m  3.  
(i) If p E Sn(@, ©-), then 

(//) 

0 arg(p(zw)) 
@w 

>0,  wEIR. (2.6) 

If p E Sn(IR, ©-), then 

aarg(p(zw)) > sin(2arg(p(u~))) ~ > 0. 
Ow 2w ' 

(2.7) 

(Recall that we assume n _> 2 throughout the chapter. The strict inequality in 
(2.7) has to be replaced by an equality if p is a Hurwitz polynomial of degree 1). 

2 .2  Convex direct ions  for Schur polynomials :  @g = @1 

T h e o r e m  4 [20]. 
(i) A polynomial q E Pn-l(@) is a convex direction for the set Sn(@, @l) if and 

only if the following inequalities hold: 

0 arg(q(e '0)) n 
< 0 e {¢ e [0,27r)" q(e ~¢) ¢ 0}. (2.8) 

O0 - 2 ' 

(ii) A polynomial q E 7~n-l(IR) is a convex direction for the set Sn(IR,@I) if 
and only if the following inequalities hold: 

Oarg(q(e*°)) < n lsin(2arg(q(e*°)) - nO) 1 
00 - 2 +  2sin(0) , 0 E {¢  e (0, Tr) ; q(e '¢) ¢ 0 ) .  

(2.9) 

Schur stable polynomials of degree > 2 have the following phase increasing 
property, see e.g. [20], [8]. 
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T h e o r e m  5. 
(i) I f p E  $n(@,@1), then 

O arg(p(e'°) ) 

O0 

6i)  I f  p e Sn(IR,@l), then 

n 
> ~, 0 e [0,2zr). (2.10) 

0 arg(p(e~°)) n sin(2 arg(p(e~°)) - nO) 
o0 > 7 + , 0 e (2.11) 

Theorem 5 shows that, in contrast with the Hurwitz ease, the phase increas- 
ing property of Sehur polynomials explicitly depends upon the degree of the 
polynomial. This explains why the characterization of convex directions given in 
Theorem 4 depends upon the degree n of the Schur polynomials in Sn(IK, @1). 
Thus, in contrast with the Hurwitz case, a convex direction for Sn(IK, @1) is not 
necessarily a convex direction for all S~,(IK, C1) with n I > degq. However, it is 
a convex direction for all S~,(IK, @x) with n' > n. 

Similarly to the Hurwitz case a pair of polynomials Po E S~(IK, @1), q E 
P~_I(IK) may not satisfy the conditions (2.8) or (2.9) although q is a convex 
direction for Sn(IK, @1) at Po in the sense of the remark in Subsection 2.1. 

3 C o n v e x  D i r e c t i o n s  f o r  S t a b l e  Q u a s i p o l y n o m i a l s  

In this section we extend the previous results to stable quasipolynomials. For 
proofs, we refer the reader to [18]. 

A quasipolynomial is an entire function of the form 

m n 

f ( z )  =po ( z ) e  T°z + p l ( z ) e  nz  + . . .  +pm(z )e  r'~z = y ~ a k j z k e  r~z (3.1) 
j = 0  k=0 

where pj ( z )  n ., "= ~k=O akJ zk, J -= O, 1, . .  m are polynomials with coefficients 
akj E ]K and TO < T1 < " "  < rm are real numbers representing "time shifts" or 
"delays". The largest degree of the polynomials pj (z) is said to be the degree of 
f ( z )  and is denoted by degf .  I fanm ~ 0 then deg f  = n and we call anmzne ~ 'z  
the principal term of f ( z ) .  

We begin by reviewing some basic properties of quasipolynomials, see [11]. 
A quasipolynomial f ( z )  of the form (3.1) with m > 0 has an infinite number of 
roots, but within any bounded region in the complex plane it has only a finite 
number of roots. Far from the origin the roots belong to a finite number of asymp- 
totic root chains. The positions of these chains are determined by a small number 
of terms in (3.1). A careful study of the geometry of these chains can be found in 
[21]. There exist three types of quasipolynomials: delay type, neutral type and 
advanced type quasipolynomials. The class of delay type quasipolynomials only 
has delay-type root chains, i.e. asymptotic root chains going "deep" into the left 
half plane. The class of neutral type quasipolynomials has at least one asymptotic 
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chain of roots in a vertical strip of the complex plane but no asymptotic chain of 
roots that  goes "deep" into the right half plane. If a quasipolynomial has at least 
one asymptotic chain of roots that  goes "deep" into the right half plane, then 
it belongs to the class of advanced type quasipolynomials. Since we deal in this 
section with Hurwitz stable quasipolynomials we will only consider quasipolyno- 
mials of delay type (characterized by degpi < degpm, i = 0, ..., m - l )  and of neu- 
tral type (characterized by degpl _< degpm, i = 0, ..., m -  1 and degpk = degpm 
for at least one k < m - 1 ) .  

For n _> 0, m > 0 and any real vector 7- = [7-o, 7-1, • • • ,7-rn] with ordered com- 
m , r  ponents r0 < 7-1 < "'" < Vm, let Q ,  (IK) denote the vector space of quasipoly- 

nomials (3.1) with coefficients in ]K, i.e. 

Q'g,~(IK) := f ;  y ( z )  = akjz%'-i~ , aki ~ 
j=0 4=0 

(3.2) 

A non-constant quasipolynomial f(z) E Qm'r(]K) is called Hurwitz stable or 
simply stable if all its roots belong to the open complex left half plane. For 
fixed n _> 0, m > 0, and fixed delays TO < T1 < " "  < rm let us denote by 

¢n,T 7-/~'r(]K) the set of all Hurwitz stable quasipolynomials f(z)  e Qn (]K) with 
Q1T$~T aura ~ O. Thus 7/nm'r(]K) C Qm'r(]K) \ n_l(]K), and all the quasipolynomials 

in 7-/~'r(IK) are of delay or of neutral type (as defined above, see [11]). For 
arbitrary quasipolynomials an analogue of the Hermite-Biehler Theorem can be 
proved and this result is known as Pontryagin's Theorem. However, Hurwitz 
type stability criteria are not available for quasipolynomiats. 

It is known that  stable quasipolynomials enjoy the following phase increasing 
property [221, [lS]. 

T h e o r e m  6. 
(i) If  f E 7-t n (•), then 

0 arg(f(~,w)) 
Ow 

> TO+Vm ~ ,  w E ll~. (3.3) 
2 

(ii) If f E 7-t'~'r(IR), then 

sin(2 arg(f(zw)) - (To + TIn)W) ] O arg(f(zw)) > v0+T,n + w > 0 .  
O~ 2 ~ "  I ' 

(3.4) 

The above theorem shows that  the phase increasing property of a quasipolyno- 
mial in 7/~'~(C) depends upon the minimal delay TO and the maximal delay ~=ra. 
It was shown in [18] that  the lower bounds in Theorem 6 are tight for both delay 
and neutral type quasipolynomials. 

7/nm'r(IK) is a non-convex cone. However, in some directions it behaves like 
a convex set. Following [18] we define the concept of convex directions for 
quasipolynomials in the following way: 
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tr~,T De f in i t i on  7. A quasipolynomial g E Qn_I(IK) is called a convex direction for 
the set 7-/~ 'r (]K) if, for all stable quasipolynomials f E 7/m'~ (lK), the stability of 
f + g implies the stability of the whole segment of quasipolynomials [f, f + g] = 
{ f  + #g; # E [0, 1]}, i.e. if g satisfies, for all f E 7-/~'r(IK), 

f, f + g E 7£~'r(~"C) ==> [f, f + g] C ~nm'~'(]K). 

We emphasize that  convex directions for quasipolynomials are not defined rela- 
tive to the whole class of quasipolynomials of given degree n but to the subclass 
of quasipolynomials of degree n having given time shifts to, rl,..., Tin, 

As a simple consequence of Definition 7 we obtain that  the convex directions 
g are characterized by the property that,  for every Hurwitz quasipolynomial 
fo E 7/~'~(]K) the stability set of the pair (fo,g) 

M(fo, g) = {# _> 0; f0 +/~g e 74m'~(]K)} (3.5) 

is a real interval. 
The following theorem gives a characterization of the convex directions for 

the set 7-~nm'r(]i). 

T h e o r e m  8 [18]. 
Ore, r (C~ (i) A complex quasipolynomial g E ~n-l~ J is a convex direction for the set 

7t'~'r(c) if and only if, for all w E {w E IR 1 g(~w) # 0}, the foUowing con- 
dition is satisfied: 

0 arg(g(zw)) < TO + r m  (3.6) 
OW -- 2 

m e t  (ii) A real quasipolynomial g E Qn_I(]R) is a convex direction for the set 
7tm'T(]R) if and only if for all ~ e {w > O{ g(~w) # 0 } the following condi- 
tion is satisfied: 

0 arg(g(zw)) < r0 +Tm sin(2 arg(g(zw)) -- (to + ~-m)W) ] 
0w - 2 + 2w- (3.7) 

I 

0 m'T [ ~ h  From Theorem 8 it follows that if a quasipolynomial g(z) E ~ n - l t  j is a 
convex direction then cg(z) is also a convex direction for arbitrary constants 
c E]K. Since the conditions (3.6) and (3.7) do not depend upon n we obtain - 
as in the case of Hurwitz polynomials -  that  a convex direction for 7/~'r(]K) is 
also a convex direction for m,~ 7~ n, (]K) if n' > deg g. 

Remark2. The above theorem characterizes those quasipolynomials g E 
m , T  Qn_I(]K) for which the intersections { f  + #g; # > 0} n 7/~'r(lK) are con- 

vex for all f E 7/nm'r(]K). As in the case of polynomials it is a different prob- 
lem to characterize the convex directions for 7/~,r(]K) relative to a given stable 

lq2~T quasipolynomial fo E 7-/~m'~(IK), i.e. those g E Qn_I(]K) for which the intersec- 
tion {fo + #g; /~ >_ 0} n 7-/nm'r(]K) is convex (or, equivalently the stability set 
M(fo,g)  (3.5) is an interval). This problem will be briefly discussed in Section 
5. 
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4 R o o t  L o c i  o f  S t a b l e  P o l y n o m i a l s  

In this section we describe the root loci approach to the convex direction problem 
[16]. As starting point we use the following observation. The convex directions 
q E Pn-1 (]K) for the set Sn(IK, Cg) are characterized by this property: If, for any 
Po E Sn(]K, Cg) and some parameter value # = #o > 0 ,  the polynomial Po + #q 
possesses a root in the "bad" region Cb the same holds true for all # >_ /to. 
In order to get a deeper understanding of this property we need to study the 
movement of the roots of P0 + #q as # varies from 0 to c¢, i.e. the root loci of 
the polynomial pencil P0 + #q. 

Suppose that  P0 C Sn(IK, Cg) and q E Pn-I(IK) are of the form 

po(z) = anz n + a n - l z  n-1 + " "  + alz  + ao (4.1) 

and 
q(z) =bm zm q- bm_l zm-1 -b " "  blz + bo ~ (4.2) 

respectively, where 0 _< m < n. In order to simplify the notation we make the 
following convention. Given p0(z), q(z) of the form (4.1) and (4.2), we set aj = 0 
and bk = 0 for all indices j and k for which these coefficients are not yet defined. 

We will analyze the movement of the roots zj(#) ,  j = 1 . . . .  , n of the poly- 
nomial 

p , ( z )  = po(z) + #q(z) (4.3) 

through the stability boundary 0Cg C Cb as # varies from 0 to c~. 
For # = 0 all the roots of (4.3) lie in the open stability region Cg of the 

complex plane C. When # is increased the roots move continuously on the com- 
plex plane. More precisely, since degp0 = n, there exist n continuous functions 
zj(.) : IR+ ~ ~, j = 1, . . . ,n such that,  for every # _> 0, z l ( # ) , . . .  ,zn(#) are the 
roots of p ,  (z) (counting multiplicities), see [17, II.5.2]. Each of the functions zj (.) 
is analytical in # at every value #0 for which zj(#o) is a simple root of p,o(z) .  
In this case we write z~(#o) for (Ozj/O#)(#o). With increasing # the polynomial 
pg (z) loses stability at a parameter value #o where one of the roots zj (.) hits the 
boundary 0Cg. In order to characterize convex directions in terms of root loci 
we have to investigate under which conditions an unstable root of pg(z)  may 
return to the stability region as p is further increased. 

We will consider the cases of Hurwitz and of Schur polynomials separately. 

4.1 R o o t  loci o f  H u r w i t z  s t ab le  polynomials 

If q is a convex direction for the set $~,(C, C_) of complex Hurwitz polynomials, 
the root loci of p~(z) can cross the stability boundary 0C_ = ~]R only in one 
direction: from left to right. However, the real case is different. If q is a convex 
direction for the set Sn(IR, C_) of real Hurwitz polynomials, roots of the poly- 
nomial p~(z) may return from instability to the stability region C_, but only 
through the origin. Therefore, in the real case, we must investigate the movement 
of the small roots of p~(z) for small variations of the parameter # _> 0 around a 
parameter value #o > 0 such that  P~o (0) = 0. 
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Suppose that  the real polynomial p,(z)  has a zero root of multiplicity k _> 
1 for some parameter value # = #0 > 0. For # varying in a small interval 
[#0 - 6 ,  ~0 + 6] we want to determine the possible changes in the number of small 
roots of po(z) + #q(z) with non-negative real parts. Note that  q(0) = bo ~ 0 
since otherwise p0(0) = 0, contrary to the assumption that  po(z) E Sn(]R, ©-) .  
Moreover, there exists at most one value of #o > 0 for which P,o (0) = 0, namely 
#o = -ao/bo (if ao/bo < 0), see (4.1), (4.2). 

We use the following notations. Given k E N, let u 0(k) , Ul(k),. . . ,  u~k) 1 denote 
the roots of z k - 1 

u(k) . 2ulr. 
= exp{z---~--}, ~, = O, 1 , . . . ,  k - 1 (4.4) 

and • (k) • (k) V (k) the roots of z k + 1 uO ~Ul ~ ' ' ' ~  k - I  

= ( 2 . +  exp{z k 1)zr }, u = O, 1 , . . . , k -  1 (4.5) 

A simple analysis shows that  the absolute value of the difference between the 
number of roots of the form (4.4) with nonnegative real parts and the number 
of roots of the form (4.5) with nonnegative real parts does not exceed one [16]. 
Let us denote by D(6) the complex disk centered at 0 E C with radius e > 0. 

The following proposition [16] describes the behaviour of the roots of a general 
polynomial pencil p~, in a small neighborhood of the origin for small variations 
of the parameter # around #o = -ao/bo. 

P r o p o s i t i o n 9 .  Let po, q be two real polynomials of the form (4.1) and (4.2), 
respectively, ao 7 L O, and suppose that p , ( z )  = po(z) + #q(z) has a root of 
multiplicity k > 1 at z = 0 for # = #o. Then there exist ~ > O, 6 > 0 such that, 
for s E ( -6 ,e )  \ {0}, P,0+s has exactly k simple roots zv(s) in D(5) and these 
roots have the following asymptotic behaviour as tsl -+ O: 

(i) I f  bo/dk < 0 then 

{11 () ~u~ +o j=O,  1,. , k - 1  > 0  s~ ~- k) s~ for s 
z (s) = , . .  

isl- ~ bo k ) + o  sl} , j = 0 , 1 , .  , k - 1  for s < 0  
d ~  ""  

(ii) I f  bo/dk > 0 then 

Zv(Z)_~. dk lV~ + 0  S~ , j = 0 , 1 , . . . , k - 1  for s > 0  

Isl~ (N-)~u~k) +o( ls]  , j : O , l , . . . , k - 1  for s < O  

where dk ---- ak -t- P4)bk. 
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Let Af+ (p~;5) denote the number of roots of p~(z) in D(5) with nonnegative 
real parts (counting multiplicities). As a consequence of the proposition and the 
preceding considerations we obtain that under the conditions of Proposition 9 
there exist e > 0, 5 > 0 such that 

I.AF+(p~,-;6) -H+(p~,+;6)I _< 1, # -  e (#o -E ,~o ) ,  #+ E (#o , lZo+6) ,  

see [16]. Thus the net change in the number of small roots in the closed right 
half-plane as # crosses the parameter value #0 is bounded by 1. 

The above analysis provides the basis for the following characterization of 
convex directions in the case of real Hurwitz polynomials (statement (ii)). 

T h e o r e m  10 [16],[2]. 
(i) A polynomial q e 79n-1(¢) is a convex direction for the set S n ( ¢ , ¢ - )  of 

complex Hurwitz polynomials if and only if it satisfies the following condi- 
tion for all polynomials 1)o E Sn(~, ©-): 

(CD)s , (¢ , e_ )  If  one of the roots zj(#), j = 1 ,2 , . . .  ,n  of p,(z)  = po(z) + 
#q(z), say zk(#), hits the imaginary axis z]R for # = #o > 0 then Zk(#O) is 
a simple root ofpo(z)+ #oq(z) and Re{z~(#0)} > O, i.e. as I~ > 0 increases 
the roots zj(#) can cross the imaginary axis only from left to right and with 
positive velocity. 

(ii} A polynomial q E Pn-I(]R) is a convex direction for the set Sn(IR, ¢ - )  of 
real Hurwitz polynomials if and only if it satisfies the following condition for 
all polynomials Po E Sn(IR, ~- ) :  

(CD)s,~(~,¢_) If  one of the roots zj(#),  j = 1 , 2 , . . . , n  of po(z) + #q(z), 
say Zk(#), hits the punctured imaginary axis ~]R \ {0} for # = #o > 0 then 
zk(#o) is a simple root of po(z) + #oq(z) and Re {z,~(#o)} > 0, i.e. as # > 0 
increases the roots zj(p.) can cross the punctured imaginary axis only from 
left to right and with positive velocity. 

Detailed proofs of (i) and (ii) can be found in [2] and [t6], respectively. The proof 
of (i) is similar to the proof of the corresponding result for Schur polynomials 
which is given in the next subsection. 

Theorem 10 shows that the difference between convex directions for complex 
and for real polynomials can be expressed in terms of root loci as follows. In the 
complex case a root zj(#) of p~,(z) can never return to the stability domain C_ 
once it has left it. In the real case there is one hole in the imaginary axis through 
which the root loci of the real polynomial p~(z), # > 0 may return to the open 
left half-plane as # increases, and this hole is at the origin. Moreover this hole can 
only be used once. In [16] it has been shown that, in the real case, the movement 
of the root loci from stability to instability (and back) obeys the following rules: 
The number N+(p~) of unstable roots of p~ (z) = po(z) + #q(z) is increasing as a 
function of Iz _> 0 with one possible exception: N+(p~) may decrease by 1 when 
# passes through P,0 = -ao/bo (if b0 ~ 0 and -ao/bo > 0). This will happen if 
and only if either al + #obl < 0 or aj  + #0bj = 0 for j = 0, 1, 2 and a3 + #0b3 > 0. 
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The multiplicity of the zero root at the parameter value #0 = -ao/bo is at most 
3. The jump sizes of the piecewise constant function/~ ~ N+(pu ) are multiples 
of 2 for every jump point # ~ -ao/bo. 

Remark3. It can be proved that condition (CD)s~(e,e_) is satisfied for a given 
pair of polynomials q E Pn-l(@) and po E Sn(@, @-) if and only if for all 
# > O ,  w E I R  

po(zw) + #q(zw) : 0 =~ Re [p~(zw) q'(zw)l [po(zW) q(zw) J > 0 (4.6) 

Similarly, condition (CD)s~(~t,e_) is satisfied for q E P~-I(IR) and P0 E 
Sn(IR,@-) if and only if (4.6) holds for all # > 0,w > 0, see [16, Lemma 
3.6]. 

4.2 R o o t  loci of  Sehur  stable polynomials  

The next theorem is a counterpart of Theorem 10 for Schur polynomials. It 
characterizes the convex directions for the sets Sn(@, @1) and Sn(]R, @1) in terms 
of root loci. 

T h e o r e m  11. 
(i) A polynomial q E /:'n-l(@) is a convex direction for the set Sn(@,@l) of 

complex Schur polynomials if and only if it satisfies the following condition 
for all polynomials 19o E Sn(C, (~1): 
(CD)s~(c,vl) If  one of the roots zj(#), j = 1,2, . . .  ,n  of po(z) + #q(z), say 
zk(#), hits the unit circle {z E @ ; Izl = 1} for # = #o > 0 then zk(#o) is 
a simple root ofpo(z) + #oq(z) and Izk( o)l' = (Olz~(#)l/O,) (#o) > o, i.e. 
as # > 0 increases the roots zj(#) of po(z) + #q(z) can only cross the unit 
circle from the inside to the outside (with positive velocity). 

(ii) A polynomial q E "Pn-I(1R) is a convex direction for the set Sn(IR,@I) of 
real Schur polynomials if and only if it satisfies the following condition for 
all polynomials po E Sn(IR, @1): 

(CD),5,~(Ia,¢,) If  one of the roots zj(#), j = 1 ,2 , . . . , n  of po(z) + #q(z), 
say zk(#), hits the punctured unit circle {z E 113 ; Izl = 1, z # +1} for 
# = #o > 0 then zk(#o) is a simple root ofpo(z) + #oq(z) and Izk( o)l' = 
(Ofzk(~)l/O~) (~o) > o, i.e. as ~ > 0 increases the roots zi(#) of po(z)+#q(z) 
can only cross the punctured unit circle from the inside to the outside (with 
positive velocity). 

Proof. Suppose that q(z) is a convex direction for the set Sn(@, @1) of complex 
Schur polynomials and Po E $n(@, @1)- Let 

po(e "°°) + I~oq(e '°°) = 0 (4.7) 

for some/zo > 0 and some 0o E [0, 27r). Since po E Sn(©, @1) we havepo(e '°°) ~ 0 
and by (4.7) q(e 'e°) ~ O. Thus we can define two analytical argument functions 
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£7 ~ arg(po(e*°)), £7 ~-~ arg(q(e*O)) in a small neighborhood of 0o. By the phase 
increasing property (2.10) of Po and the condition (2.8) at 0 = 8o we obtain 

(arg(po(ei°°)) - arg(q(ei°°)))' = Re [e *°° (p'°(e~e°) q'(e*°°)'~] t ~  ~ ) 7  > 0 (4.8) 

If we assume, by contradiction, that  zk(#o) = e *e° is a multiple root of p,o(Z), 
i.e. 

po(e '°°) + ~oq(e '0°) = O, p'o(e '°°) + .oq'(e '0°) = O, 

then 
Re [e '°° (p'°(e'~°) q'(e'°°) 

t , ~  q(e,0o))] = 0  

whence a contradiction to (4.8). Thus every root zk(#o) = e *e° on the unit circle 
is a simple root of P~o and in a small neighborhood of #o in IR there exists an 
analytic function zk(/s) of/S satisfying 

po(zk(v)) +/sq(z~(v))=0. 

Differentiating this identity with respect to g at/So we obtain 

[P~(e 'e°) +/s0q'(e'°°)] 4(Vo) + q(e'°°) = O. 

Division by -q (e  *°°) = #olPo(e *°°) yields 

(plo(e*°°) q'(e '°°)'~ z~(/so) _ 1 (4.9) 

Hence (4.8) implies 

rzU.o)l (4.10) 
Re LzS~o~] > 0. 

On the other hand Zk(#) = r(#)e *¢(t*) where r(/s) = IZk(#)] and ¢(/S) = 
arg(zk(#)) are analytical real-valued functions of/S in a neighborhood of #o. 
Thus 

4(~o) _ r'(~o) + ~¢'(vo) 
z~(/so) r(-~o) 

and 
[4(.0)] r'(,o) 

Re lzk(,o)] - r(/so) " 

Hence (4.10) implies r'(/~o) = [zk(#o)[' > 0. Therefore condition (CD)s~(¢,¢1) 
is satisfied. 
Conversely, suppose condition (CD)s~(¢,cl)  holds. Then there are no holes in 
the unit circle through which the roots of po(z) + #q(z) can enter the open unit 
disk C1 from the outside when # increases. Denote by/zo the smallest positive 
value of # for which p~(z) loses the Schur stability property. Then at least one 
root remains outside the unit disk for all # >/so, and M(po, q) defined by (2.2) 
is an interval. Hence q is a convex direction for Sn(C, 1~1). 
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(ii) The real case is complicated by the fact that  there are two holes in the unit 
circle through which a root of the real polynomial pu(z) = po(z) + #q(z) can 
return into the unit disk after leaving it, namely z = 1 and z = -1 .  Thus the 
behaviour of the root loci at the exceptional points z = +1 must be analyzed. 
For any 5 > 0, let N(+I)(p,;  5) denote the number of roots ofpu(z) of magnitude 
larger than 1 in the 5-neighborhood of z = 1 and N(_I) (P~; 5) denote the number 
of such roots in the 5-neighborhood of z = - 1. There is at most one value of # for 
which z = 1 is a root ofp~(z) and the same holds for z = -1 .  Analogously as in 
the Hurwitz case it can be shown (see [16]) that  if p~(1)  = 0 and p~2(-1) = 0, 
there exist e > 0 and 5 > 0 such that  for all # -  E (#1 - e , # l ) ,  tt + E (#1,#1 +c)  

IN(+~)(p,-;~) - N(+~)(p,+;a)t __% 1, 

and for all #_ E (#2 - a,#2), #+ E (#2,#2 +~)  

IN(_~)(pt,_;5)-N(_~)(pt,+;~)l < 1, 

respectively. Based on this fact the proof of (ii) can be carried out in a similar 
way as in the complex case replacing the unit circle by the punctured unit circle. 
For further details concerning the proof of (ii), see [16]. [] 

RemarkS. The previous proof shows that  condition (CD)s~(¢,¢0 is satisfied for 
a given pair of polynomials q E Pn- I (C)  and Po E $n(¢,  C1) if and only if for 
all #0 > 0, 0o E [0, 2~r) 

\p0(e,0o ) q(e,Oo ) ] > 0 (4.11) 

Similarly it can be shown that  condition (CD)s~(~,¢I) is satisfied for q E 

:P•-I (IR) and Po E S~(]R, ¢1) if and only if (4.11) holds for all #o > 0, 0o e (0, 7r), 
see [16, Lemma 5.6]. 

4.3 R e l a t i v e  convex  d i r ec t ions  for Sn(]K, C_) a n d  Sn(~(, Cl) 

In this section we discuss the problem of determining the set of relative convex 
directions for Hurwitz and Schur polynomials. 

We begin with a general definition of the concept of relative convex direction. 

De f in i t i on  12. Suppose X is a real or complex vector space and S a subset of 
X. Given Xo E S, a vector y E X is said to be a convex direction for S relative 
to xo if the intersection R(xo,y) n S of the ray R(xo,y) = {xo + ay; a > 0} 
with S is convex. 
A vector y E X is said to be a convex direction for S if it is a convex direction 
for S relative to every x E S. 

The difference between the two concepts can be illustrated by a simple example. 
Consider the punctured Euclidean space S = IRa\  {0} (regarded as a subspace of 
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the vector space X = ]Rn). Then the set of convex directions for S is {0}, but for 
every x0 E S the set of convex directions for S relative to xo is ]Re \ (-]R+xo). 

Given any subset S in a vector space X two distinct convex direction prob- 
lems arise: 

Global  Convex Direc t ion  P rob lem.  Determine the set of all convex direc- 
tions for S. 

Rela t ive  Convex Direc t ion  P rob lem.  For arbitrary x0 E S, determine the 
set of all convex directions for S relative to Xo. 

Theorems 2 and 4 solve the Global Convex Direction Problem for the sets 
Sn(lK, ©_) C Pn(]K) and Sn(]K, @1) C P,~(]K). On the other hand the Relative 
Convex Direction Problem for these sets is still unsolved. However, the proofs 
of the root loci characterizations in the previous subsections imply the following 
proposition (see [2] and [16]) which yields less conservative criteria than the 
global convex direction conditions stated in Theorems 2 and 4. 

P ropos i t i on  13. Let ]K = ]R or ]K = @. 

(i) A polynomial q e 7~n-l(IK) is a convex direction ]or the set Sn(IK, C_) 
relative to a given polynomial Po E Sn(]K, C_) if condition (CD)s . (~ ,¢_)  is 
satisfied (see Theorem 10). 

(ii) A polynomial q E 7)n_I(]K) is a convex direction for the set Sn(]K, C1) rel- 
ative to a given polynomial Po e Sn(]K, C1) if condition (CD)s~0K,c~) is 
satisfied (see Theorem 11). 

It has been shown by an example in [16] that there exist convex directions 
for Sn(]K,@-) relative to a given P0 e Sn(]K,@-) which do not satisfy 
(CD)s . (~ .¢_) .  Thus (CD)s.0K,¢_) is a sufficient but not a necessary con- 
dition for q e 7)n-l(lK) to be a convex direction for the set Sn(IK, C_) relative 
to the given Po E Sn(]K, @_). In view of this it is surprising that - as we have 
seen in the preceding subsections - the condition (CD)8.(~<,¢_) is necessarily 
satisfied for all p0 E Sn(lK, C_) if q E Pn-I(IK) is a global convex direction for 
the set Sn(]K, C_). A similar comment applies to the Schur case. 

The conditions (CD)$.(~,¢_) and (CD)8.(~,¢~) can be checked by graph- 
ical tests based on Nyquist plots. 

P ropos i t i on  14. 
(i) A polynomial q e "Pn-I (C) satisfies (CD)8~(¢,¢_) for a given polynomial 

P0 E Sn(@, @_) /f and only if the Nyquist plot of h(z) = q(z)/po(z) over z]R 
crosses the negative real axis ( -c~,  O) only in the clockwise direction, i.e. for 
every w E ]R 

0 arg(h(~w)) 
h(~w) e (-c~,O) =~ Ow < 0,  (4.12) 

(ii) A polynomial q e 7~n-1(lR) satisfies (CD)s~(~t,¢_) for a given polynomial 
Po E Sn(]R, ~J-) if and only i] the Nyquist plot of h(z) = q(z)/po(z) over the 
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positive imaginary axis z(O, ~ )  crosses the negative real axis (-oc,  O) only 
in the clockwise direction, i.e. for every w > 0 

h(,w) e (-c~,0) ~ 0 arg(h(zw)) Ow < O. (4.13) 

We omit the proof which can be found in [16] (for the real case) and prove 
instead the following counterpart for the Schur case. 

P ropos i t ion  15. 
(i) A polynomial q e 7Pn-l(C) satisfies (OD)s=(c,v:) for a given polynomial 

P o e  Sn((B, ¢1) if and only if the Nyquist plot of h(z) = q(z)/po(z) on the 
unit circle 0C1 = {e~°; 0 E [0,2~r)) crosses the negative real axis (-oc,  O) 
only in the clockwise direction, i.e. for all 0 E [0, 27r) 

h(e '°) E (-oo, O) ::v 0 arg(h(e~°)) 0 0 < O. (4.14) 

(ii) A polynomial q E Pn_I(IR) satisfies (CD)s,,(~t,v~) for a given polynomial 
19o E Sn(hrt, C1) if and only if the the Nyquist plot of h(z) = q(z)/po(z) on 
the upper half of the unit circle {e'°; 0 e (0,~)} crosses the negative real 
ax/s (-cx), O) only in the clockwise direction, i.e. for all 0 E (0, rr) 

h(e ~°) E (-c~,O) -~ 0 arg(h(e:°)) 
O0 <0.  

Proof. For every 9 e [0, 27r), we have h(e '°) = q(e'°)/po(e ~°) E (-0% 0) if and 
only if the following equality holds with # = -1 /h(e  :°) > 0: 

po(e ~°) + l~q(e '°) = O. 

By (4.8), for all 0 E {¢ E [0, 27r); q(e '~) ~ 0}, 

0 arg(h(e'°)) [ (p~o(e :°) q'(e :°) ~ ] 
00  - - R e  e ' ° \ ~  ~ ] j .  

Hence (4.14) is satisfied if and only if, for all # > 0, /9 E [0, 27r), 

po(e '°) + #q(e '°) = 0 Re [e :a (p'°(e'°) ] > 0. (4.15) 

By the remark made after Theorem 11, condition (CD)sn(¢,vl) is satisfied if 
and only if (4.15) holds. Thus (i) follows. 
Statement (ii) can be proved similarly, making again use of the remark at the 
end of Subsection 4.2. [] 
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5 R o o t  L o c i  o f  S t a b l e  Q u a s i p o l y n o m i a l s  

In this section we apply the root loci approach in order to characterize convex 
directions for sets of stable quasipolynomials. To this end we investigate how the 
root loci of 

f (z) = fo( ) + > o 

cross the imaginary axis if fo(z) E 7-/m'r(]K) and g(z) is a convex direction for 
the set 7-/turn' (]K). Since fo(Z) E 7/m'~(]K) all the roots of fo(z) lie in the open 
left half-plane. As # is increased, the roots move continuously on the complex 
plane. Assume that, for some i~ = #o, f~o(z) has a zero z = zwo on the imaginary 
axis. Then there exists a continuous function z0(#) in a small neighborhood of 
#0 such that f~(zo(#)) = 0 and z0(#0) = ~wo. If z0(#o) E ~IR is a simple root, 
then Zo(#) is analytical. In this case we write z~(#) for (Ozo/O#)(#). We will see 
that, as # increases, the roots of the quasipolynomials f~ (z) = fo(z) + #g(z) can 
move across the (punctured) imaginary axis ~]R only from left to right, if g(z) is 
a convex direction for 7-/m'r(]K) and ]K = @ (or ]K = IR, respectively). 

Consider a pair of quasipolynomials fo(z), g(z) where fo(z) E 7/m'~(]K) is of 
the form 

r~ n 

S o ( z )  = , ( 5 .1 )  
j=O k=O 

m~7" and g(z) E Q~-I  (I[4) is of the form 

m n - - 1  

g ( z )  = c, z e rjz . (5 .2 )  
j - - 0  k=O 

To simplify the notations we make the following convention. Given fo(z), g(z) 
of the form (5.1) and (5.2), respectively, we set aij = 0 and ci~ = 0 for all index 
pairs (i, j )  for which these coefficients are not yet defined. In particular Cnj "= 

0, j = 0 , . . . ,  m. The main result in this section is the following characterization 
of convex directions for quasipolynomials of delay and of neutral type. 

T h e o r e m  16 [2],[1]. 
~rI~T (i) A complex quasipolynomial g(z) E Qn_l (@) is a convex direction for the set 

7{~,T(@) if and only if it satisfies the following condition for all quasipoly- 
nomials fo(z) E ?-/nm'r(@): 

(CD)u~,~(@) /f  one of the roots of fz(z) = fo(z) + #g(z), say zo(#), hits 
the imaginary axis z]R for # = #o > 0 then zo(#o) is a simple root of fzo(Z) 
and Re {z~(#o)} > O, i.e. as # increases the roots of fz(z)  can only c~vss the 
imaginary axis from left to right and with positive velocity. 

myT" (ii) A real quasipolynomial g(z) E Qn-1 (IR) is a convex direction for the set 
7{~,~(]R) if and only if it satisfies the following condition for all quasipoly- 
nomials fo(z) E 7{~'r(lR): 

(CD)7/~,~(IR) / f  one of the roots of f~(z), say zo(#), hits the punctured 



Time-delay Systems 89 

imaginary axis ~IR \ {0} for # = #o > 0 then z0(#0) is a simple root of 
fuo(Z) and Re{z~(#0)} > 0, i.e. as # increases the roots of fu(z  ) can only 
cross the punctured imaginary axis from left to right and with positive veloc- 
ity. 

The proof of (i) follows the same lines as in the polynomial case,, for details see 
[1]. The proof of (ii) requires a careful analysis of the behaviour of the root loci 
in a neigbourhood of the origin. The following counterpart to Proposition 9 has 
been proved in [2]. 

P r o p o s i t i o n  17. Let fo(z) E 7/m'~(lR), g(z) E Qn_I(IR) be two real quasipoly- 
nomials of the form (5.1) and (5.2), respectively, g(O) = ~jmoco i ~ O, and 
suppose that f~(z) = fo(z) + #g(z) has a root of multiplicity k >_ 1 at z = 0 for 
# = tto. Then there exist ~ > O, 5 > 0 such that, for s E (-~,~) \ {0}, fuo+s(z) 
has exactly k simple roots in the complex disk D(5) and these roots have the 
following asymptotic behaviour as ]s] ~ 0: 

<O then 

,.~ -g 
u (k) 8 lg V Ak(,0) u + o  sz , = 0 , 1 , . . . , k - 1  f o r s > O  

z (s) = 

0 i A~(~o ) + o  sl~ , u = 0 , 1 , . . . , k - 1  f o r s < O  

( i0  

{ Ak(l to) ]1 

., -g 
sz  ~ A~(uo) J + o  sr  , u = 0 , 1 , . . . , k - 1  f o r s > O  

Z11(8) -~-- m 1 
Isl \ + o  Isl i , / o r s < 0  

where 

Ak(l~o) = (akj + #OCkj) + (ak-u  + #OCk-lj)~ + " "  + (aoj + #oCoj)~T 
j=o " " 

Let Af+(f~; 5) denote the number of roots of fu(z) in D(5) with nonnegative real 
parts (counting multiplicities). As a consequence of the previous proposition we 
obtain that Af+(fu; 5) changes at most by one as # crosses the value/to. More 
precisely, there exist e > 0, ~ > 0 such that 

I f+(f. < 1, # -  e (#o-e , /zo)  , #+ e (#o ,#o+e)  (5.3) 

Therefore, as/~ > 0 increases and some roots of fu (z) reach the closed right half- 
plane, not more than one of them may ever return to the open left half-plane 
through the origin z = 0. Note that this can only happen at the parameter value 
#o = -f(O)/g(O)) if f(O)lg(O) < O. 

Based on these facts, statement (ii) in Theorem 16 can be proved similarly 
as in the polynomial case. For details see [1]. 
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Remark 5. It follows from the proof of Theorem 16 (i) (see [2]) that the condition 
?~t,T (CD)7/~'~ (C) is satisfied for a given pair of quasipolynomials g E Qn-I (@) and 

fo E 7/~'~(C) if and only if for all # > 0, w E 

Re[ J > 0. (5.4) 

m~T Similarly, condition (CD)7/~,~(IR) is satisfied for g E Qn_I(]R) and fo E 
"~nm'r(IR) if and only if (5.4) holds for alt # > 0,~o > O. 

We conclude this chapter with some comments concerning the Relative Convex 
Direction Problem for quasipolynomials, see Subsection 4.3. 

While the Global Convex Direction Problem for quasipolynomials has been 
solved in [18] (see Theorem 8) the Relative Convex Direction Problem is still 
open. However, as in the polynomial case the root loci approach yields a sufficient 
condition which is less conservative than the global convex direction condition 
in Theorem 8. 

m, ' r  P r o p o s i t i o n 1 8 .  Let IK = ]R or ]K = C. A quasipotynomiat g(z) E Q~_I(IK) 
is a convex direction for the set 7/nm'r(lK) relative to a quasipolynomial fo(z)  e 
7/~n'r(IK) if the condition (CD)7/~,~(IK) stated in Theorem 16 is satisfied. 

A proof of this proposition is easily derived from the proof of the sufficiency 
statements in Theorem 16 (i),(ii), see [2], [1]. 

The conditions (CD)7/~.~(IK), lK = ]R, C can be checked via a graphical 
test. 

Proposition 19. 
o m,r c@~ satisfies (CD)7/~.~(©) for a given stable (i) A quasipolynomial g(z) E ~n- l~  J 

quasipolynomial fo(Z) E 7-/ain't(C) if and only if the Nyquist plot of h(z) = 
g( z ) / fo( Z ) on z]R crosses the negative real axis ( -oo ,  O) only in the clockwise 
direction, i.e. for every w E ]R 

h(zw) e ( -c~ ,0)  ~ 0 arg(h(~w)) 0~ < 0 .  (5.5) 

m~T (ii) A quasipolynomial g(z) E Qn_I(IR) satisfies (CD)Tt~,~(IR) for a given sta- 
ble quasipolynomial fo(Z) E 7/~'r(]R) if and only if the Nyquist plot of 
h(z)  = g(z) / fo(Z)  on z(0, c<)) crosses the negative real axis ( -oo ,  O) only 
in the clockwise direction, i.e. (5.5) holds for all w > O. 

Using the previous remark the proof of this proposition can be carried through 
as in the polynomial case. 
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Abstract. This chapter focuses on the problem of asymptotic stability 
of a class of linear neutral systems described by differential equations 
with delayed state. The delay is assumed unknown, but constant. Su/- 
ficient conditions for delay-independent asymptotic stability are given 
in terms of the existence of symmetric and positive definite solutions of 
a continuous Riccati algebraic matrix equation coupled with a discrete 
Lyapunov equation. 

1 I n t r o d u c t i o n  

The stability of time-delay systems is a problem of practical and theoretical 
interests since the existence of a delay in a physical system may induce insta- 
bility or poor performance. In certain control problems, one encounters linear 
hyperbolic differential equations with mixed initial and derivative boundary con- 
ditions, see, e.g. processes including steam or water pipes, loss-less transmission 
lines. Using a technique proposed in Hale and Lunel [3], these systems can be 
easily described by functional differential equations of neutral type. 

A different example is proposed by Niculescu and Brogliato [7], where the 
effect of force measurements delays on the stability of manipulators in contact 
with a rigid environment is considered. The closed-loop system is represented 
by a linear time-invariant neutral equation. In this case, the time-delay may be 
a cause of possible bouncing of the robot's tip on the environment. The effect 
of small delays on the stability properties of some closed-loop neutral systems 
have been considered in [6] and the references therein. 

In this chapter, one considers a particular class of time-delay systems de- 
scribed by linear neutral differential equations. We are interested in giving con- 
ditions for delay-independent stability conditions (which do not carry any infor- 
mation on the delay size). A guided tour of the general corresponding methods 
for linear systems with delayed states could be found in [9]. For some back- 
grounds on the stability of functional differential equations of neutral type, see 
e.g. Hale and Lunel [3], Kolmanovskii and Myshkis [5]. 

The approach adopted here is based on the Lyapunov's second method and 
makes use of an appropriate Lyapunov-Krasovskii functional. Sufficient delay- 
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independent stability conditions are given in terms of some appropriate Riccati 
matrix equation coupled with a Lyapunov one. 

The chapter is organized as follows: in Section 2, the main results are given. 
Singular value tests in terms of an 7-/oo norm of some transfer functions are 
proposed in Section 3. A formulation in terms of LMI is given in Section 4. 
Some concluding remarks end the chapter. 

2 M a i n  R e s u l t s  

Consider the following class of linear neutral systems: 

&(t) - C2(t - T) = Ax(t) + Bx(t  - T) (2.1) 

with the initial condition 

x(to + 8) = ¢(8), V 8 6 [-% 0]; (to, ¢) 6 ]1% + x Cv,T, (2.2) 

where x(t) 6 lR" is the state, V > 0 is the delay and C, A and B are constant 
matrices of appropriate dimension. 

We have the following result: 

T h e o r e m  1. The neutral system (2.1)-(2.2) is delay-independent asymptotically 
stable if 

(i) A is a Hurwitz stable matrix; 
(ii) C is a Schur-Cohn stable matrix; 
(iii) there exist two symmetric and positive definite matrices R > 0 and Q > 0 

such that the following Riccati equation has a symmetric and positive definite 
solution P > O: 

A T p  + PA  + S + Q+ 

+ [P(AC + B) + SC] R -1 [ c T s  + (B T + CTAT)p] = 0, (2.3) 

where S > 0 is the symmetric and positive definite solution of the Lyapunov 
discrete equation: 

c T s c -  S + R = O. (2.4) 

The proof of the Theorem is given in Appendix B and makes use of the 
following Lyapunov-Krasovskii functional candidate: 

Y(xt)  = (x(t) - Cx(t - r))TP(x(t) -- Cx(t -- T)) 

+ x(t + O)Sx(t + O)d& (2.5) 
T 

Notice that since C is a Schur Cohn stable matrix, then the Lyapunov equation 
(2.4) has always a symmetric and positive definite solution S > 0 for every 
positive definite matrix R > 0. 
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In conclusion, the delay-independent stability problem of the neutral system 
(2.1)-(2.2) is transformed into the existence of a symmetric and positive-definite 
solution of the "parametrized" Riccati equation (2.3), where the paprameters are 
given by a couple of positive-definite matrices satisfying the discrete Lyapunov 
equation (2.4). 

Remark 1. The Schur Cohn stability of the matrix C ensures the stability of the 
operator 7) : Cn,r ~ ]Ftn: 

v ( ¢ )  = ¢(0)  - c ¢ ( - r ) ,  

which is a necessary condition to have the stability of the neutral differential 
equation (2.1)-(2.2). 

Notice also that the Hurwitz stability of the matrix A is a necessary condition 
for the existence of a symmetric positive definite solution to the Riccati equation 
(2.4), but is not a su~cient one. 

Remark 2. A similar result has been proposed by Slemrod and Infante [10] using 
a particular Lyapunov-Krasovskii candidate (2.5) with: 

P = In S : ~[A + A T - B T c  - CTB], 

such that the matrix S is symmetric ans positive-definite. Notice that their result 
uses some particular "constraints" on the system's matrices A, B and C. 

The Riccati equation (2.3) is similar to the Riccati equations encountered in 
the LQG theory, but with a negative sign in the quadratic term. Indeed, if we 
consider the system: 

~(t) = A~(t) + (AC + B)u(t), 

with the quadratic index: 

J -~ U(t) "L c T s  
SC ].I u(t) ] dr, 

the corresponding LQG Riccati equation is: 

A T x  -~ X A  - [X(AC + B) + SC]R-I[(B T -k CTAT)X  -t- cTs]  ~- Q + S -- O. 

A different Lyapunov-Krasovskii functional has been proposed by Verriest in 
[12]: 

f V(x(t) ,xt ,~t)  = x(t)Tplx(t) + x(t + o)Tp2z(t + O)dO 
T 

f; + ~(t + o)rpa~:(t + O)dO, (2.6) 
T 
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where Pi (i = 1--,3) are symmetric and positive definite matrices satisfying some 
appropriate Riccati inequalities (see [12]). 

The form of the Lyapunov functional (2.6) includes "information" on the 
derivatives ~?t- A proper norm for this asymptotic stability case is given by: 

= sup {ll (t + o)11, II (t + o)11}. 
-r<O<O 

Some connections between the stability results obtained using the norms I1" lie 
and I1" ilcl could be found in Els'golts' and Norkin [2]. For the sake of simplicity, 
we do not consider this approach here. 

In the case of a scalar neutral system: 

it(t) - c~(t - r) = ax(t) + bxCt - T) (2.7) 

with a, b and c E JR, Theorem 1 becomes: 

Corol lary  2. The scalar neutral system (2.7) is delay-independent asymptoti- 
cally stable if 

(i} a < O, 
(ii) l l< l, 
(iii) I b I<1 a l- 

Notice that this result "approaches" the necessary and su~cient  condition 
obtained in [4] using a frequential domain approach (the exact condition is given 
by (i)-(iii), but with (iii) changed in I b I_<1 a I). 

Consider now a more general form for the system (2.1) with A and B con- 
tinuous time-varying matrices, i.e. 

~(t) - Cx(t  - r) = A(t)x(t) + B(t )x( t  - r) 

In this case, Theorem 1 may be rewritten as follows: 

(2.8) 

T h e o r e m 3 .  The neutral system (2.8)-(2.2) is delay-independent uniformly 
asymptotically stable if 

(i) C is a Schur-Cohn stable matrix; 
(ii) there exist two symmetric and positive definite matrices R > 0 and Q > 

0 such that the following Riccati equation has a symmetric solution P(t) 
satisfying pmIn < P(t) < pMIn for some positive real numbers Pra and pM: 

P + A T p  + P A  - [P(AC + B) + SC].  
• (R + 2S) -1 [ c T s  + (B T + CTAT)p]  + Q + S = O, 

where S > 0 is the symmetric and positive definite solution of the Lyapunov 
discrete equation: 

c T  s c  - s -t- R -- O. 
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The proof of the Theorem 2 follows the same ideas as the proof of Theorem 1, 
but with a time-varying matrix P(t) in the Lyapunov-Krasovskii functional (2.5). 
Notice that the existence of Pm and PM allows that the corresponding Lyapunov 
functional candidate is positive-definite and has an infinitesimal upper bound. 

It is easy to see that for constant matrices A(t) and B(t), one completely 
recovers the results given in Theorem 1. Furthermore, if C = 0 one recovers the 
results proposed by Verriest in [13]. 

3 Singular Value Test for Delay-Independent Asymptotic 
Stability 

Theorem 1 gives a sufficient condition to guarantee the asymptotic stability 
independently of the delay size o~the neutral system (2.1)-(2.2) in terms of the 
existence of symmetric and positive definite solutions to a continuous Riccati 
equation (2.3) and to a discrete Lyapunov equation. 

Notice that to the Riccati equation (2.3), one can associate the Hamiltonian 
matrix: 

A - (B + AC)R-1cTs 
H = - ( Q  + S) + S C R - 1 c T s  

(AC + B ) R - I ( A C  + B) T ] 
(3.1) 

- [A - (B + AC)R-1CTS] T J 

In order to have a symmetric and positive definite solution to the Riccati equa- 
tion (2.3), one needs that the associated Hamiltonian matrix has no eigenvalues 
on the imaginary axis, or equivalently (via the bounded rel lemma) that the 
associated transfer matrix 

G(s) = ( Q + S - S C R - 1 C T S )  ½ x 

x (sin - A - (B + AC)R-1CTS) -1 (AC + B)R-½ (3.2) 

satisfies the norm condition: 

sup tlG(j~)ll < 1. (3.3) 
~>o 

Notice that in the case C = 0, the Lyapunov equation (2.4) becomes the equality 
S = R and the condition (3.3) for the transfer (3.2) recovers the singular value 
test proposed in [11] for delay-independent asymptotic stability of linear systems 
with delayed state: 

sup [[(Q + S)~(jwI,~ - A) -  BS-~[[ < 1. 
w_>o 
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4 LMI Formulation 
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Theorem 1 can be easily converted into an LMI feasibility problem (see [1] and 
the references therein). We have the following result: 

Coro l l a ry4 .  The neutral system (2.1)-(2.P) is delay-independent asymptoti- 
cally stable if there exist two symmetric and positive definite matrices P > 0 and 
S > 0 such that the following LMls hold: 

[ A T p + P A + S  P ( A C + B ) + S C ]  
CTs q- (B T q- CTAT)p CTSC - S < 0, (4.1) 

c T s c - - s  < 0. (4.2) 

Furthermore, if C = 0, i.e. the system (2.1) becomes a retarded one: 

~(t) = Ax(t) + Adx(t - r), (4.3) 

Theorem 1 still holds, i.e.: 

Corol lary  5 [8, I]. The linear system with delayed state (~.3)-(2.2) is delay- 
independent asymptotically stable if there exist two symmetric and positive defi- 
nite matrix P > 0 and S > 0 such that the following LMI holds: 

[ A T P + P A ÷ S  P B ]  
BTp - S  < 0, (4.4) 

5 Concluding Remarks 

The problem of stability of a class of linear systems described by differential 
equations of neutral type has been considered. Sufficient delay-independent con- 
ditions are given in terms of some algebraic Riccati matrix equations combined 
with appropriate Lyapunov equations. The approach adopted here is based on 
the Lyapunov's second method. Two numerical tools for the analysis have been 
also considered: a singular value test and linear matrix inequality (LMI) tech- 
niques. The proposed results can be easily extended to multiple delays case. 
F~rthermore, in the particular case of linear systems with delayed state, one 
covers previous results form the literature [11]. 

A Stability Theory 

Consider the following functional differential equation of neutral type: 

d 
d-t [79(xt)] = f(xt), (A.1) 

with an appropriate initial condition: 

x(to+8) = ¢(/9), V / g e [ - r ,  0]; ( t0 ,¢)ElR + x g v  (A.2) n ~ T  ' 
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where D : Cn,r -+ ]R n, 73(¢) = ¢(0) - C¢( -v)  and x(t)  E ]R n. We say that 
the operator D is stable if the zero solution of the corresponding homogeneous 
difference equation is uniformly asymptotically stable. For our choice, this con- 
dition is replaced by the Schur-Cohn stability of the matrix C. For a general 
framework, see e.g. Hale and Lunel [3]. 

If V : ]R x Cn,r -'+ IR n is continuous and x(to, ¢) is the solution of the neutral 
differential equation (A.1) through the (to, ¢) defined by (A.2), we define: 

1 [V(t + h, Xt+h)(to, ¢) -- V(to, ¢)] ~'(to,¢) = limsup ~ 
h--+O+ 

We have the following result: 

T h e o r e m  6 [3]. Suppose D is stable, f : ]It × Cn,r -~ ]R n takes bounded sets 
of Cn,r in bounded sets of ]R n and suppose u(s),  v(s) and w(s)  are continuous, 
nonnegative and nondecreasing functions with u(s),  v(s) > 0 for s ¢ 0 and 
u ( 0 )  = v (0 )  = 0.  

I f  there is a continuous function V : IR × Cn,r "+ ]Rn such that 

(i) u!II (¢)II) v(t, 0) v(II¢IIo), 
(iO v(t, ¢) < 

then the solution x = 0 of the neutral equation (A.1)-(A.2)  is uniformly stable. 
I f  u(s) --+ co as s ~ co the solutions are uniformly bounded. 
I f  w(s)  > 0 for s > O, then the solution x = 0 is uniformly asymptotically 

stable. 
The same conclusions hold if the upper bound on V(t,¢) is given by 

-w(}{¢(o){{). 

B P r o o f  o f  T h e o r e m  1 

Let us consider the following Lyapunov-Krasovskii functional candidate: 

V(x t )  = (x(t) - Cx( t  - T))W p ( x ( t )  -- Cx( t  - r ) )  

+ x( t  + O)Sx(t + O)dO, (B.1) 
T 

where P and S are the solutions of the Riccati equation (2.3) and respectively 
of the Lyapunov equation (2.4) and let introduce the operator D : Cn,r --+ ]R n: 

7:>(¢) = ¢(0) - C ¢ ( - r ) ,  ¢ E en,~. (B.2) 

It is easy to see that the functional V satisfies the condition: 

u({ De  I) -< Y(¢) < v(tl¢llc), (8.3) 
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where u(s) = )~m~n (P)s  2 and v(s) = [)~max (P) + 7"~max(S)]s 2. The derivative of 
V(.) along the trajectory of the neutral system (2.1) is given by: 

?(x~) (AT(t) + Bx ( t  - 7"))Tp(x(t) - Cx( t  - r)) 

+ ( x ( t )  - -  Cx( t  - 7") )T p (  Ax(t)  + Bx ( t  - 7")) 

+x( t ) r  Sz( t )  - z ( t  - 7 " ) r S x ( t  - 7") 

Simple computation allows to rewrite the equation (B.4) as follows 

?(z~) 

(B.4) 

(x(t)  - C x ( t  - T) )T (AT  p + P A  + S ) (x ( t )  - C x ( t  - T) ) 

+(x( t )  -- C x ( t  - T) )T p A C x ( t  - T) 

-{-X(t -- r )T  CT AT p ( x ( t )  - C x ( t  - T) ) 

+( z ( t )  -- C x ( t  - r)  )T s c x ( t  -- r) + z ( t  -- r ) T c T  s ( z ( t )  -- C z ( t  - r)  ) 

q-X(t -- T)T c T  s c x ( t  - T) -- X(t -- T)T s z ( t  -- 7") 

+(x ( t )  -- C x ( t  - 7") )T p B x ( t  -- 7") 

+ x ( t  -- 7")T B T  p ( x ( t )  -- C z ( t  - 7")). (B.5) 

Since S is the positive definite solution of the Lyapunov equation (2.4) and using 
the operator form (B.2), the relation (B.5), follows: 

?(x~) :D(x t )T (ATp  + P A  + S):D(xt) + I ) ( x t ) T ( P A C  + P B  + S C ) x ( t  - T) 

- ~ ( t  -- T)T ( c T  s "~ CT AT p -{- BT p)D(xt) 

--x( t  -- T)T R x ( t  -- r)  (B.6) 

Since P is the symmetric and positive definite solution of the Riccati equation 
(2.3) and using the Schur complement property, we have: 

(B.7) 

?(z~) <_ - :D(x t )TQD(x t )  

- [ ( c T A T p  + B T + c T s ) 7 ) ( x t )  -- R x ( t  - r ) ] T R  - '  x 

× [ ( C T A T p  + B T q- c T s ) D ( x t )  - R x ( t  - T)] 

< -l)(xt)rQV(zt) 

The inequalities (B.3) and (B.7) allow to conclude the uniform asymptotic stabil- 
ity of the trivial solution of the neutral differential equation (2.1) (see Appendix 
A or [3], Theorem 8.1, pp. 292-293). 

Furthermore, the negativity of the Lyapunov functional candidate does not 
use any information about the delay size and in conclusion, the asymptotic 
stability property holds for any positive delay. 
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A b s t r a c t .  In this chapter, we consider two problems associated with 
time-delay systems: robust stability analysis and robust stabilization. We 
first obtain two results for robust stability using the integral quadratic 
constraint approach and the linear matrix inequality technique. Both re- 
sults give an estimate of the maximum time-delay which preserves robust 
stability. The first stability result is simpler to apply while the second 
one gives a less conservative robust stability condition. We then apply 
these stability results to solve the associated robust stabilization problem 
using static state feedback. Our results provide new design procedures 
involving linear matrix inequalities. 

1 Introduct ion  

Consider a time-delay system described by 

~(t) = Aox(t) + A~x(t - T) + Buu(t) (1.1) 

where x(t) E ]R n is the state, u(t) e ]R 'n is the control input, T is an unknown 
constant time delay, A0, Ad and B~ are constant matrices. 

The system above has been analyzed by many researchers. Two types of 
robust stability conditions have been reported in the literature: the so-called 
delay independent conditions and delay-dependent conditions. In comparison, 
the delay independent conditions are simpler to apply, but the delay-dependent 
conditions axe less conservative in general. With the recent advances in convex 
optimization (see, e.g., [2]), the focus of the current research is towards finding 
less conservative delay-dependent conditions by allowing more complex convex 
optimization. See [13] for a review of robust stability results. 

One of the goals in this chapter is to provide new conditions under which the 
robust stability of the autonomous system of (1.1) is guaranteed. Our work is 
based on two ingredients: 1) a sufficient condition for robust stability expressed 
in the frequency domain; and 2) the integral quadratic constraint (IQC) ap- 
proach to robustness analysis. Two stability results are presented. Both results 
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are expressed in terms of linear matrix inequalities (LMIs), and they give an 
estimate of the maximum time-delay which preserves robust stability. The first 
stability result is simpler to apply while the second one is less conservative. We 
point out that the stability results in this chapter generalize those in [13]. 

After derived the two stability results, we then apply these results to solve the 
associated robust stabilization problem for the system (1.1) using state feedback 
control. We also provide explicit formula for controllers. Finally, we show several 
examples which demonstrate the applications as well as the advantages of the 
results obtained in this chapter. 

2 Preliminaries 

Several preliminary results are required for robust stability analysis of the au- 
tonomous system of (1.1). Throughout this chapter, we denote A = Ao + Ad. 

L e m m a l .  The autonomous  sys tem of  (1.1) is asymptotically stable i f  A is 
asymptotical ly  stable and that 

A ( j w ,  r )  := j w I  - A - rp l  ( j w r ) A d A o  - r p z ( j w r ) A d A d  (2.1) 

is nonsingular for" all w E JR, where 

sin(v/2) 
p l ( j v )  = - e  -1v/2 (v/2) ' p2( jv )  = p x ( j v ) e  -'iv. (2.2) 

Proof. It is well-known that the autonomous system of (1.1) is asymptotically 
stable if and only if 

A ( j w ,  r)  = j w I  - Ao - Ade  - j ~  

is nonsingular for all w E JR. 
Suppose A ( j w ,  r )  is nonsingular, we need to show that A(jw, T) is nonsingu- 

lar. Let x be such that , , l ( jw, T)X = 0. We need to show that x = 0. To see this, 
we note 

= ( j w I  -- Ao - A d e - J ~ r ) x  

= ( j w I  -- A - Ad(e  - j ~ r  - 1))x 

= ( j w I  -- A - vp l  ( j w r ) A d j W ) x  

= ( j w I  -- A - T p l ( j O ) T ) A d ( A o  + A d e - J ~ r ) ) x  

= A ( j w ,  r ) x  (2.3) 

So x must be zero due to the nonsingularity of A ( j w ,  T). 
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Fig. 1. Interconnected Feedback System 

Consider the interconnected system in Figure 1 which is also described by 
the following equations: 

2(t) = Ax(t) + Bg(t) 

9(t) = Cx(t) + Dg(t) 

z(t) = 9(t) + v(t) 
g(t) = r(t) + w(t) 

w(t) = A(z( t ) )  (2.4) 

where A(.) E _A which is a set of linear or nonlinear dynamic operators to be 
specified later. Denote 

G(s) = C ( s I  - A ) - I  B + D (2.5) 

and assume A to be asymptotically stable in the preliminaries and stability 
analysis sections. 

The feedback block A(.) is assumed to satisfy an IQC which is constructed 
via a filter given as follows: 

:~$ = A / x /  + BSuI ,  

y /  = CyxI  + D I u  I 

• ; (o )  = o 

(2.6) 
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where A I is asymptotically stable. Denote the transfer function of the filter by 

GI(s ) = C](sI - A I ) - IB I  + Of (2.7) 

The IQC used in this chapter is then described by the following inequality: 

yl~yi  >O, asT  ~ o o ,  V A 6  ~_,z6E2[O, oo), (2.8) 

where ~ is a constant symmetric matrix. 

Remark 1. The definition above does not require w 6 £2 [0, oo). But if this is the 
case, then the IQC (2.6)-(2.8) becomes, following the Parseval Theorem, 

f + ~  [ z ( Jw)]dw>0,  V A6_A (2.9) [z*(jw) w*(jw)]~(jw) w(jw) 

where z(jw), w(jw) are Fourier transforms of z(t), w(t), respectively, and 

• (s) = V (s) Gi(s) (2.1o) 

The following results serve the foundation of the IQC approach. 

Theorem 2. (The IQC Theorem) [19, 16, i5] Given a connected set of oper- 
ators ~__, containing the zero operator,/or the feedback block of the system (2.4), 
the system is absolutely stable if there exists some ~(s) of the form (2.10) and 
a constant e > 0 such that both (2.8) and the following condition are satisfied: 

[G*(j~) I ]~( jw)[G(~w)]+eI<_0,  V w 6  (-oo, oo) (2.11) 

Further, for causal and asymptotically stable linear time-invariant (LTI) A(.), 
(2. 8) is equivalent to the following: 

[ I ] >0, V ~ 6 ( - o o ,  oo), A 6 A  (2.12) [I A*(jw)]~(jw) A(j~) -- 

That is, the system (2.4) is absolutely stable if there exists ~(s) of the form 
(2.10) such that (2.11) and (2.12) hold. 

Lemma3. (KYP Lemma) [1, I7] Given A 6 IR nxn, B 6 ]R '~×k and sym- 
metric J9 6 ~(,+k)×(n+k), there exists a symmetric matrix P 6 IR nxn such 
that 

[ ATp + PA PB 1 
BT p  0 + [2 < 0 (2.13) 

i/and only i/there exists some constant c > 0 such that 

[BT(( jwI_A)- I )*  I]Y2 [ ( j ~ I - A ) - I B  ] I + e I < O ,  V w6( -oo ,  oo) (2.14) 

F~urther, if A is Hurwitz and the top-left n x n submatrix of [2 is positive semidef- 
inite, then (2.13) implies P > 0. 
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We also recall the following two linear matrix inequality results: 

T h e o r e m  4. (Positive Real  Parrot  Theorem)  [2, 11, 10, 7] Given a sym- 
metric matrix • E IR mxm and two matrices U, V of column dimension m. There 
exists a matrix 0 of compatible dimensions such that 

+ u T o T v  -'~ v T o u  ' (  0 (2.15) 

if  and only if 

uT~pu_L < 0 (2.16) 

v T o v ±  < 0 (2.17) 

where U± (resp. V±) is any matrix whose columns form a basis of the null space 
of V (resp. V). 

LemmaS .  [6] Given matrices A, B1, B2, C1, C2, Xd, Q = QT, w1 = w T ,  w2 = 
W T of appropriate dimensions, suppose W1 > O, W2 > O. Then there exists a 
matrix K of appropriate dimension such that 

QA T + AQ QC T B1 ] 

CIQ -W1 0 q- [_~__J g [  I 0 I 0 ] 
B T 0 -W2  

+ KT[ B~ X~ I 0 ] < 0 (2.1s) 

holds if and only if the following LMI holds: 

Af 0 C1Q -W1 0 < 0 (2.19) 

B~ 0 -W2 

where H is any matrix whose columns form a basis of the null space of [BT X[] .  
Denote K1 the solution of the following formula: 

= - X d t - W 1  [ c 1 o  ' 

where + denote the pseudoinverse. Further let K2 be any solution of the LM1 

• (K,)  + B2(I - X+Xa)K2 + K T ( I  - X+Xd)B  T < O, (2.21) 

where 

k0(K1) QA T + AQ + KT  B T + B2K1 

Suppose (2.19) holds. Then a desired K for (2.18) is given by K = K1 if (I - 

X-~Xd)B~ = 0 or g = KI + (I - X+d Xd)g~ otherwise. 
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3 S t a b i l i t y  A n a l y s i s  

Consider the time-delay system (1.1). For stability analysis, we assume that 
u(t) ==_ O. Express 

Ad = HE,  H 6 ]R TM, E E ]R qxn (3.1) 

where q < n, and H and E are of full rank. Define 

HT , C = = , Cr = rC, D = 0, (3.2) 
C2 EAd 

and A being the set of LTI operators with Fourier transform given by 

z2 (jw) = A diag{pl (jwT)Iq, P2 (jwT) Iq } (3.3) 

for some A E [0, 1], where Pa(') and P2(') are defined in (2.2). 
Using Lemma 1, we know that the system (1.1) is robustly stable if the 

following system is robustly stable: 

k(t) = Ax(t)  + Bg(t) 

~l(t) = C~x(t) + Dg(t) 

z ( t )  = + v ( t )  

9(t) = r(t) + w(t) 
= (3.4) 

Following the IQC Theorem, we assert that the system (1.1) is robustly stable 
if there exists some IQC, or equivalently, ~(s) as in (2.10) such that (2.11) and 
(2.12) hold. Note that the notion of absolute stability coincides with the notion 
of robust stability for a linear uncertain block A. In the rest of this section, we 
study two IQCs which give two robust stability conditions. 

The first IQC is a simple constant D-scaling used in the analysis of structured 
singular value. More precisely, we take 

Gl(s  ) = diag{I2q, I2q} (3.5) 

and 
= T -1 diag{A1, A2, -A1, -A2} (3.6) 

for some q × q symmetric and positive-definite Ai, i = 1, 2, which are to be chosen. 
Denote 

A = diag{A1,-/12} (3.7) 

The resulting IQC has 
• (s) = d i a g { A , - A }  (3.S) 

It is straightforward to verify that (2.12) holds because pi(.) are contractive. The 
sufficient condition (2.11) for robust stability becomes 

[ B T ( ( j w I - A ) - I )  * 12q ] 0 -T ' - IA  hq - 

(3.9) 
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for all w. 
Using the KYP Lemma, the above is equivalent to the existence of P = p T  > 

0 such that the following LMI holds: 

A T p  + P A  + TCTA1CI + vCTA2C2 P H  P H  ] 
H T p  -T-1A1 0 ] < 0 
H T p  0 -T-1A2 

Multiplying T to the second and third row and column blocks, which does not 
alter the validity of the LMI, the above becomes 

A T p  + P A  + vCTAiCI + TCTA2C2 v P H  v P H  
rl(T) ---- v H T p  -rA1 0 j < 0 (3.10) 

v H T p  0 - rA2  

Note tha t / / (T)  is affine in P, A1 and A2. 
We summarize the analysis above as follows: 

T h e o r e m 6 .  The autonomous time-delay system of (1.1) is robustly stable for 
all 0 < v <_ ~ if there exist n x n symmetric and positive definite matrices A1, A2 
and P such that the LMI 

n(~)  < 0 (3.11) 

holds, where II(T) is defined in (3.10). 

Proo]. Suppose (3.11) holds. It follows from the analysis above that the system 
(1.1) is robustly stable for ~. The conclusion that the above also implies the 
robust stability for all 0 < T < ~ follows from the fact that the H(v) is convex 
in T. More precisely, H(r )  < 0 when T is sufficiently small, due to (3.11) and 
A~ > 0. The rest follows from the convexity of II(v). o 

The second IQC we use to study the robust stability of the system (1.1) will 
be more involved but give a less conservative condition. Let 

f (s)  : c f (sI  - af ) - lb l  + d] (3.12) 

be any asymptotically stable SISO filter with the following property: 

[f(jv)l  > , Vv e IR (3.13) 

Denote the diagonal transfer matrix 

F(s) = f(s)I2q = Cf ( s I  - A $ ) - I B f  --}- Df  

We will discuss how to choose f(s)  later. 
Now define 

G i(s ) = diag{ F(sT), I2q} 

(3.14) 

(3.15) 



108 Robust Stability and Stabilization via IQC 

and ~ as in (3.6). This yields 

= [ F(sr)z(s) w(s) ] (3.1 1 yf(s) 

• (s) = G}(s)~Gj(s) = ~.-1 diag{F*(sr)AF(sT),-A} (3.17) 

Subsequently, condition (2.12) is automatically satisfied because 

r[I2q A*(Jw)]~(J~) [ A(j~) I2q ] 

= F* (jWT) AF (jwT) -- A 2 diag{p~ (jwr)pl (jwT) A1, p~ (jwT)p2 (jwT) A2 } 
= A1/2(F*(jwr)F(jwr) - A2diag{p~(jwT)pl(jwr), p~ (jw~')p2 (jwT)})A 1/2 
> 0 

Therefore, a sufficient condition for robust stability of system (1.I) is the condi- 
tion (2.11) which, in our case, becomes 

G;(jw)F*(jwr)r-lAF(jwr)Gr(jw)-T-1A+eI2q < 0, V w e (-co,  co) (3.18) 

for some (sufficiently small) e > 0, where Gr(s) = C r ( s I -  A)-IB. 
Our next step is to convert the frequency domain condition (3.18) into the 

state space. To this end, we denote by Cr(sI-ftr)-l[~r a state-space realization 
of F(sr)Gr (s). Then, it is straightforward to verify that 

A~ = [ r - lA I  BfC A , / ~ = [  0]B , C~ = [ C f D,C~ ] (3.19) 

Condition (3.18) can be rewritten as 

[[~T((jwI-- .~r)- t)  * I] d i ag{T-1CTA~, -v - IA}  [ ( j w I -  f i , ) - lB  ] I +eI<_O 

for all oa E (-co,  oo). 
Applying the KYP Lemma, the above is equivalent to the existence of some 

p = f i t  > 0 such that the following linear matrix inequality holds: 

~Tp _v_l A < 0 (3.20) 

The above analysis is summarized as follows: 

T h e o r e m 7 .  The autonomous time-delay system of (1.1) is robustly stable for 
all T < ~ if there exist an asymptotically stable filter f(s), and symmetric and 
positive-definite matrices A1, A2 and D such that the following LMI holds: 

/I(~) < 0 (3.21) 

where [I(.) is defined in (3.20). 

Proof. The proof is very similar to that of Theorem 6, so the details are omitted. 
The only step worth of discussion is the fact that H(f )  < 0 implies H(T) < 0 
for all 0 < 7- _< f .  This step is a bit tedious but not too difficult to verify too. c~ 
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4 S tab i l i za t ion  

Consider the time-delay system (1.1). Our objective is to design a static state 
feedback controller such that the closed-loop system of (1.1) is uniformly asymp- 
totically stable. The results derived in this section are based on Theorems 6 and 
7. 

Let a desired controller be given in the following form: 

u(t) = Kx( t )  (4.1) 

where K is the gain matrix to be designed. 
With the controller (4.1), the closed-loop system of (1.1) is as follows: 

~c(t) = (Ao + BuK)x(t)  + Adx(t - T) (4.2) 

Applying Theorem 6 and Lemma 5 to the system (4.2), we obtain the follow- 
ing result: 

T h e o r e m  8. There exists a state feedback controller (4.1) such that the closed- 
loop time-delay system of (1.1) with this controller is robustly stable for all 0 < 
7 < ~ if there exist n x n symmetric and positive definite matrices F1, F2 and Q 
such that the LMI 

LOlXJ 
(4.3) 

holds, where 

QA T + AQ QC T 

CIQ --T-1F1 
C2Q o 

1"1HT 0 
F2H T 0 

QC T HF1 HF2 

0 0 0 
- r - i F 2  0 0 

0 -T-1F1 0 
0 0 --r- iF2 

and AfB is any matrix whose columns form a basis of the null space of 
[B T BTET]. 

Further, suppose (4.3) holds. Let K1 be the solution of the following formula: 

[ 0 Bu E Bu 
= - EBu -~-1F1 

(4.4) 

and K2 be any solution of the LMI 

kV(K1) + Bu(I  - (EBu)+EBu)K2 + K T ( I  - (EBu)+EBu)B T < 0, (4.5) 
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where 
T T ~(K1) = QA T + AQ + K 1 B u + BuK1 

0 I"1 HT (4.6) 
[ H T L 0 0 0 1"2 H T 

Then, a desired controller gain matrix K is given by K = K1Q -1 if 

( I  - (EBu)+EBu)B T = 0 

or K = (K1 + (I - (EBu)+EB,)K2)Q -1 otherwise. 

Proof. Applying Theorem 6 to the closed-loop system (4.2), we find that this 
system is robustly stable for all 0 < v _ ~ if there exist n x n symmetric and 
positive definite matrices A1, A2 and P such that the matrix inequality 

(A + BuK)Tp + P(A + BuK) + ~CTA2C2 ~PH ~PH 
+~(C1 + EBuK)TA1 (C1 + EBuK) < o (4.7) 

~HTp -~A1 0 
~HTp 0 -~A2 

holds. Using Schur complements, (4.7) can be rewritten as 

ATp + PA ~C T ~C T ~PH ~PH 
~C1 -~A[ 1 0 0 0 

]- ~c~ o -~A; ~ o 0 
I ~HTp 0 0 -~AI 0 
[ ~'HTp 0 0 0 -~A2 

I eEBu I T T 0(4.8) 
[ i ] vB~E , 0 0 0 ] <  + g [ I 0 ] 0 0 0 ] +  g [BUR- T T 

Define Q = p - l ,  1"1 = A~ -1 and F2 = A21, respectively. Multiplying 

diag{Q, ~-1I, ~-1I, ~-1F1, ~-1F2} 

to both sides, the inequality above is equivalent to 

EB~ 
~ 0  ] B , E  IOOO1<O (4.9) IIc(~').+ (KQ)[I 0 ] 0 0 0]+ (KQ)T[BT T T 

Then, the results in the theorem are obtained by applying Lemma 5. o 
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Corresponding to Theorem 7 for stability analysis, we can obtain the follow- 
ing less conservative result for robust stabilization: 

T h e o r e m  9. There exists a state feedback controller (4.1) such that the closed- 
loop time-delay system of (1.1) with this controller is robustly stable ]or all T ~_ 
if there exist symmetric and positive definite matrices [', Q f and Q such that 
the LMIs 

[ 0 t l J  < 0 (4.10) 

[ A f Q f + Q I A ~  QfC~ ] 
CfQI _/~ < 0 (4.11) 

hold, where 

[Ic(~-) = 

QA T + AQ QCTBf QCTDy 

BfCQ v- l (AfQf  + QfAy) v - l Q f C f  
DfCQ "r-lCfQf _~.-1[~ 
FB T 0 0 

0 
0 

_ T - - l / ~  

(4.12) 

and Aft is any matrix whose columns form a basis of the null space of the matrix 
[B~ xy]  wi th  

Xd = [ Bf  o,1[ 
Further, suppose (4.10)-(4.11) hold. Denote 

Xc = Df 

and 

. (4.13) 

CfQf - F  ' 

Let K1 be the solution of the following formula: 

xd ~ - lwf  J 

and let K2 be any solution of the LMI 

O(K1) + Bu(I X+Xd)K~ + KT(I + T 
- -  -- X d Xd)Bu < O, 

where 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

O(KI) T T QA T + AQ + K 1B u + BuKI 

• 0 
XcQ + XdK1 ] 

B ~ j . (4.18) 
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Then, a desired controller gain matrix K is given by K = K1Q -1 if 

(I- x2x )B =O 
or K = (KI + (I - X f  Xg)K2)Q -1 other~-xise. 

Proof. The proof of this theorem follows the same line as that for Theorem 8. 
Namely, we apply Theorem 7 and Lemma 5 to the closed-loop system (4.2). We 
first use Schur complements to rewrite the robust stability condition in Theo- 
rem 8, assuming K = 0. That is, H(~) < 0 if and only if 

Cr -~A -1 ] 0 < 0 

Furthermore, we take t5 = diag{P/, P} since there is no interaction between the 
closed-loop system and the filter. Let O = / 5 - 1  = diag{Qf, Q} and/~ = A -1. 
Multiplying diag{ (~, 9 -1 I, F} to the both sides, the above inequality is converted 
into 

r -1 (AIQ f + QfA~) BICQ 7-1QIC~ 
QCTB~ QA T + AQ QCTD~ 

T-1CIQI DfCQ - r - l [  " 
0 I'B T 0 

0 
B-P 

<0 .  
0 

_T--l/% 

Swapping the first two rows and columns, which does not affect the inequality, 
we further convert the above into 

/Ic(~) < 0 (4.19) 

where frc(~) is defined in (4.12). 
Now let static state feedback be used, i.e., A0 becomes Ao + BuK. Subse- 

quently, A becomes A + B~K and C becomes 

C + [ EBuK 
o 1" 

Hence, the robust stability condition (4.19) becomes the following robust stabi- 
lization condition: 

-fIc(~) + (KQ) [ I 0 I 0 ] +  (KQ) T [ B T x T  [ O] <0 

Then, it is tedious but straightforward to prove the chaxacterization of K by 
applying Theorem 7 and Lemma 5. 

Remark2. If we take the filter f(s) = 1 and further constrain A to be A = 
diag{A1, A2}, then it is obvious that Theorem 9 reduces to Theorem 8. To see 
this, we may select B I = 0, C I = 0 and A I = - I ,  then clearly (4.10) reduces to 
(4.3) while (4.11) is trivially satisfied. 
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5 Examples 

113 

Before providing illustrative examples, we address the problem of finding a suit- 
able filter f(s). First, we note that f(s) is a SISO transfer function, and that the 
constraint on f(s) (3.13) is independent of the system (1.1). This means that 
once a "good" f(s) is found, it can be applied to various time-delay systems of 
the form (1.1). The complexity of f(s) is mainly determined by the degree of 
f(s). A second order example is given below: 

2(s + 0.9) 
f(s) = (s + 0.8)(s + 2.216) (5.1) 

with its Bode plot given in Figure 2. Also plotted in Figure 2 is t sin(w)/wl to 
justify (3.13). 

1.2 
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0.4 

0.2 

0 
0 

I I I I I 

\ 

5 10 15 20 25 30 
V 

Fig. 2. Example of f(s). Solid line: If(jr)l; Dotted line: I sin(v)/v I 
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E x a m p l e  1: Consider the autonomous system of (1.1) with 

A0=[2 0] Ad=[-1 0 ] 
0 0.25 ' -0.1 -0.85 

Using Theorem 7 and the f(s), the maximum T is obtained to be Tmax = 0.9848. 
Obviously, the conservatism of 7max depends on the filter f(s). It is found 

in simulation that  second order filters usually outperform first order ones. Also, 
higher order filters can be used to obtain slightly larger Tmax. 

Using Theorem 6, the maximum T is obtained to be Tma, = 0.6417. 
As comparisons, we notice that  the maximum ~- using the results in [13, 12] 

is Tma x : 0.58 while the optimal ~ for the system with the given parameters is 
7o = 1.54112]. 

E x a m p l e  2: Consider the system (1.1) with 

i 2 0 ]  Ad[ 1 0 ]  u[1] ,53  
A0 = 1.75 0.35 -0.1 -0.25 ' 1 " 

Since A0 + Aa is unstable and (Ao, Bu) is not controllable, the system (1.1) with 
the above given parameters can't be stabilized independent of the time-delay 
using state feedback controller. 

Using Theorem 9 and t h e / ( s ) ,  the maximum ~- is obtained to be Tmax = 
0.984. 

To avoid numerical difficulties, we synthesize the state feedback controller 
using Tma x ~--- 0.92 instead. Following the explicit K formula in Theorem 9, we 
obtain that  a desired controller gain matrix is given by 

K = [-1.7063 - 1.2815]. (5.4) 

6 Conclusion 

We have obtained two new robust stability conditions for time-delay systems by 
applying the IQC approach. These conditions are expressed in terms of LMIs and 
therefore easily solvable. Although a single delay is considered in this chapter, we 
stress that  an extension to multiple delays can be simply derived. As applications 
of these new robust stability results, robust stabilization problems using static 
state feedback control have been tackled. Explicit controller formulas have also 
been provided. 

We have not explained how to determine the maximal time delay ~. Gener- 
ally, ~ can be obtained by a gradient method. First we set ~ to be sufficiently 
small, then gradually increase it until the corresponding robust stability or sta- 
bilization conditions are no longer feasible. A fine gradient can be adopted in 
the final critical region to obtain larger ~. Alternatively, we can use a bisection 
method. That  is, we start with any lower bound and and a upper bound for 
~. Then, choose the initial ~ to be the average of the bounds and test for the 
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solvability of robust stability or stabilization conditions. The bounds wilt be im- 
proved according to the outcome of the test. This procedure is repeated until 
the gap between the bounds is sufficiently small. 
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Graphical Test for Robust Stability with 
Distributed Delayed Feedback 

Erik I. Verriest 

School of Electrical and Computer Engineering, Georgia Institute of Technology, 
Atlanta, GA 30332-0250 

Abstract .  The performance of a nominally designed state feedback con- 
trol for a linear systems is analyzed in the case that the information, 
available at time t for feedback, consists of a functional of the state over 
the interval It - T, t]. Sufficient conditions are given for the stability and 
asymptotic stability, independent of the matrix valued weight functions 
on the delay-perturbed state. These sufficient conditions, obtained via 
the Lyapunov-Krasovskii theory, revolve around the existence of some 
positive definite matrix functions satisfying certain Riccati-type differ- 
ential equations. Connections are made with the theory of robust con- 
trol and its frequency domain criteria. New graphical criteria akin to the 
Nyquist criterion are derived to obtain the delay perturbation margin. 

This chapter applies the theory of stability of linear differential delay sys- 
tems with distributed delays. In earlier work [3, 4, 8, 9, 7, 14, 17, 19, 20, 21, 22], 
the theory of Lyapunov functionals was exploited to obtain sufficient conditions 
for the stability of time-invariant and time-varying differential delay systems, 
independent of the delay time. The conditions that  were obtained were of an 
algebraic nature since they involved the existence of a triple of positive defi- 
nite matrices satisfying a certain Riccati equation. This Riccati equation has a 
positive sign in its quadratic term, and is thus of the type encountered in ro- 
bust control theory [12]. In fact, connections between the stability of the delay 
differential equation, and the theory of robust control were obtained in [9, 18]. 
Similar techniques were used to analyze the stochastic stability of delay systems 
with crisp (i.e., non-distributed) delays in [3, 4]. Since the existence proofs are 
constructive, they can be exploited to prescribe a whole class of stabilizing gains 
[10]. 

In the present chapter the performance degradation and stability margins for 
delay perturbations of a nominal state feedback control are analysed. Preliminary 
ideas were explored in [17]. Consider thus a multivariable time invariant linear 
system 

5c = A x  + B u  (0.1) 
where A E ]R nxn, B E lR n×m. The input u is m-dimensional, and x E ]R n. It is 
assumed that  for this system, a nominal  state feedback gain K was designed for 
which the closed loop system 

= (A  - B K ) x  + B u  (0.2) 

117 
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is stable. We shall analyze the robustness of this feedback gain in case the avail- 
able information at time t contains only a "fraction", A, of the instantaneous 
state x(t), and the remaining part, (1 - A), is given by a functional of the state 
history over the interval [t - T, t]. This contrasts with common robust design 
techniques which consider perturbations with bounds on the transfer function 
([15]). As in many situations such frequency domain information may not be 
available, the Lyapunov-Krasovskii theory presents a viable alternative, based 
on a time domain bound. Of course, in the presence of additional frequency do- 
main bounds, one should expect more precise statements. Some Nyquist type 
graphical robust stability tests are also provided for such cases. 

More precisely, we assume that the signal fed into the control gain matix K 
is 

T f T 
= Ax(t) + fJo #(T)x(t -- T) dr, I#(T)I d T =  1 -- A. (0.3) y(t) 

The normalized weight #0(t) def ~ will be referred to as the shape of the delay 
perturbation, and the smallest A for which stability can be guaranteed, the delay 
perturbation margin. With this definition, A = 1 actually means that the nomi- 
nal solution may not be robust, as stability can only be guaranteed (recall that 
we only have sufficient conditions) for # = 0. It could therefore happen that a 
slight delay perturbation of the feedback signal destabilizes the closed loop. 

The actual system dynamics in closed loop are modeled by the functional 
differential equation 

/ ~(t) = (A - ABK)x( t )  - B K  #(T)x(t  -- r) dT. (0.4) 

In function of the parameter A, we will set up sufficient conditions for the asymp- 
totic stability of this system, independent of T and the precise shape of #(T), 
except for the single constraint that f [  I#(t) ldt = 1 - A. This problem is sig- 
nificant, as many continuum systems (infinite dimensional) are approximated 
by finite dimensional ones, and therefore what is fed back is in fact the infi- 
nite dimensional exact state. The propagation delays in vibrating plates and 
beams [1] provide specific examples. In such problems the local vectorfield is 
a smooth superposition of the states at all previous instants in some interval. 
For instance, in viscoelastic structures the stress-strain states of the materials 
are modeled by such equations [6]: e.g., the Piola-Kirchoff stress function in the 
equation of motion of a one-dimensional viscoelastic body which moves longitu- 
dinally has a distributed delay integral of the history of the displacement. Many 
other applications in man-machine systems, process control, remote control and 
robotics, involve delays due to transportation lags and conduction or commu- 
nication times which may be distributed due to reflection at boundaries whose 
distance smoothly varies with the angle (line of sight). If in a feedback con- 
troller, the actual computation times are taken into account, one is also forced 
to consider delay differential (or difference) models [2]. Likewise, sampled data 
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systems provide another instance where delays - here periodically time varying 
- are introduced. Distributed delay is further prevalent in population dynamics. 
In all these applications, robustness with respect to the shape information is 
important (this includes the robustness with respect to the maximal delay T), 
especially since the precise shape information is seldom known in practice [6, 
Section 1.4]. 

To facilitate the analysis, it is first assumed that the shape function #(t) as 
well as the effective interference time T are known. As will be apparent, the suf- 
ficient conditions derived only require partial information. This is then exploited 
to obtain robust stability conditions. 

In Section 2, some background material on retarded Junctional differential 
equations and the Lyapunov-Krasovskii theory is introduced. Sufficient condi- 
tions for stability in terms of Pdccati-like equations are derived in Section 3. 
In Section 4 the results are reinterpreted as robust stability conditions and fre- 
quency domain criteria are derived via the positive real lemma. In Section 5, 
the stability margins for the delay perturbed controller are derived. A simple 
graphical test for robust stability is given in Section 6, and its use as a tool 
to determine a bound on the stability margin is illustrated. Some examples are 
collected in Section 7 to illustrate the concepts. 

Throughout, the following notation will be used: If M is an arbitrary matrix, 
then M I denotes its transpose, and if M is an invertible (square) matrix we shall 
use i -T  for (M- l )  T. 

1 Retarded Functional Differential Equations 

The delay differential equation is usually represented as a functional differential 
equation [5]. We take C([-T,  0], ]Rn), the Banach space of continuous functions 
[-T,0] ~ ~n ,  with the norm H¢I[= supt [¢(t)[, as the natural state space for 
such systems [6]. Here, [¢(t)[ denotes the Euclidean norm of ¢(t) E ]R n. Let the 
initial data ¢ E C([-T,  0], ]R n) for the problem be given. 

For t > t o - T ,  let x(t; to, ¢) denote its solution at time t with the initial data 
¢, specified at time to, i.e., x(to + 0, to, ~b) = ¢(0) for 0 E I-T, 0]. Because of the 
time-invariance of the dynamical system, x(t; to, ¢) = x ( t -  to, O, ¢) for all t > to. 
As customary, x(t + O) for 0 e [-T,  0] is denoted by x~ (0), which is the state 
(infinite dimensional) of the delay system. Equation (0.4) is then of the general 
form 

~.( t )=F(xt)  , x t o = ¢  , F(O)=O, (1.1) 

with F : DT = C([-T,  0], IR n) ~ ]R n, linear in the argument. It is well known 
that this retarded functional Cauchy problem has a unique solution, defined 
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for all t E [to - T, co), and which depends continuously on F and ¢ [5, 6]. Its 
equilibrium solution is xt - 0. Let 

Q~ = {0 e C[-T,O] ! llCll < 5}. 

The following definitions are standard in the theory of time-invariant delay dif- 
ferential equations. [6, p. 98]: 

Def in i t i on  1. The equilibrium solution, xt -=- 0, of the delay-differential equa- 
tion (0.4) is said to be 

1. (uniformly) stable if for any e > 0, there is a 6 = 6(e) > 0, such that 
Ix(t; 0, ¢)l -< e for any initial function ¢ 6 Q~, and Vt > 0. In the opposite 
case, it is called unstable. 

2. (uniformly) asymptotically stable if it is (uniformly) stable, and there is a 
K > 0 such that for any 7 > 0 there is a T(7, K)  > 0 such that Ix(t; 0, ¢)[ <_ 
7, Vt >_ T(7, K) and ¢ E QK. 

3. (uniformly) exponentially stable if there are constants K > 0, 6'1 > 0, 6"2 > 0, 
such that  for any ¢ 6 QK, the solution x(t; 0, ¢) of the system (0.4) satisfies 
the inequality 

Ix(t;0,¢)l  < CltlO[le -c:* ,  0 < t < co 

These definitions are the straight forward extensions of the various stability con- 
cepts in the finite dimensional case. Note that because of the time-invariance of 
the dynamical equation, the above definitions for stability, asymptotic stability 
and exponential stability are in fact automatically uniform. 

The main results of this chapter hinge on the following theorems, taken 
from the book of Kolmogorov and Myshkis [6] and repeated here to make the 
chapter self contained: Let ~2 be the class of scalar nondecreasing functions 
a 6 C([0, co), JR) such that a(r) > 0 for r > 0, and a(0) = 0. 

Def in i t i on  2. Let V : QK ~ ]R be a continuous functiona~ such that V(0) -- 0. 
The functional V : ¢ -+ V(¢)  is called positive definite (negative definite) if 
there is a function a 6 ~ such that V(¢)  _> a([¢(0)l) (respectively, V(¢)  _< 
-a ( [¢(0) i ) )  for all ¢ 6 QK. It is said to have infinitesimal upper bound if 

IV(¢)l < ~(11¢11), for all ¢ 6 QK. 

T h e o r e m 3  ( T h e o r e m  1.2, p. 103 [6]). If.there is a continuous positive def- 
inite functional V : QK -+ ]R with derivative V <_ O, then the trivial solution of 
(1.1) is (uniformly) stable. 

T h e o r e m 4  ( T h e o r e m  1.1, p. 103 [6]). Assume that for some T > O, there 
exists a positive definite continuous functional (¢. -~ V(¢) ) : QK -+ ]R which has 
infinitesimal upper bound and whose derivative V is a negative definite functional 
on QK. Then the trivial solution of (1.1) is (uniformly) asymptotically stable. 
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T h e o r e m 5  ( T h e o r e m  1.3, p. 103 [6]). A necessary and sufficient condi- 
tion for the (uniform) exponential stability of the trivial solution of (1.1) is that 
there exists a continuous functional V : Qg -+ ]R such that for some positive 
constants Ci; i = 1 . . .4 ,  and ~b,r 1C QK: 

Clll¢tl < y(¢)  < c t1¢II, (1.2) 
V(¢) < -C3ll~bll, (1.3) 

IV(C) - V(r/)l < Caliph - r/ll. (1.4) 

Notes and Comments If one wants to prove stability in its various forms for equa- 
tions with unbounded delays, then instead of the subset QK of C([ -T,  0],]Rn), 
one needs to work with the metric space of continuous functions ¢ : (-oo,  0] --+ 
~ n .  We shall not consider this case here. 
One obtains global stability in its various guises, if the the set QK may be re- 
placed by all of C([-T,  0], ]l~n), i.e., the bound K may be arbitrary large. 

2 R i c c a t i - t y p e  E q u a t i o n s  as  S u f f i c i e n t  C o n d i t i o n s  

We derive here a sufficient condition for stability, which is facilitated by an 
auxiliary key-lemma, proven in [14]. To make this chapter self-contained, it is 
here repeated. Consider the general distributed delay system (the nondistributed 
case was treated in [3, 8]) 

~(t) = Ax(t) q- B(r)x(t  - T) dT. (2.1) 

L e m m a 6 .  Given a symmetric matrix P E lR r~xn and a differentiable matrix 
valued function Q(t) = Q'(t), satisfying Q(T) = 0 and dOdlt) = --C(t)'C(t), 
define the Lyapunov-Krasovskii functional V : C([-T,  0], ]R n) --+ ]1~ by: 

V(¢) = ¢(0) 'P¢(0) + ¢(0)'Q(-0)¢(/9) d~. (2.2) 
T 

If  ~ is the directional derivative along solutions x(t) of (2.1), then the inequality 

£Y(xt)  < -x( t ) 'Rx(t) ,  (2.3) 

holds, where 

-R=A'P+PA+C'PC+Q(O)+P B(r)e(r)-le(r)-rB(r)'drP. (2.4) 

Proof. Consider the Lyapunov-Krasovskii functional (2.2). Its directional deriva- 
tive along trajectories of (2.1) is 

dV(xt) = ~e(t)'Px(t) + x(t)'P~(t) + x(t)'Q(O)x(t) - x(t - T)'Q(T)x(t - T)+ 
dt 
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+ ftTx(v)lOQ(t--O~ r)X(r)dT (2.5) 

Substituting (2.1) with the expression for (~ and 'completing the squares', the 
above expression yields for the directional derivative £, 

£V = x(t)'Mx(t) - x(t - T)'Q(T)x(t - T) - ~(t, r)~' (t, r) dr. 

where 

[/; M = A'P + PA + Q(O) + P B(r)C(r)-lC(T)-TB(r) ' d P, 

and 
~(t, r) = [x(t - r)'C(v)' - x(t)'PB('c)C(r)-l]. 

Since by assumption Q(T) = O, and the second term is negative semi-definite, 

£V(t) < -x(t) 'R(t)x(t)  (2.6) 

follows. [] 

One then easily establishes the following 

T h e o r e m  7. Consider the system (2.1). If there exists a pair of positive definite 
(symmetric) matrices P, and R, and a matrix function C(.) : [0,T] ~ ]pj~×n 
such that C(t) is nonsingular for all t E [0, T], and 

/ ' P  + PA + R + [C(r)C(T)' + PB(T)C(r)-lC(r)-TB(r) 'P] dr = 0 (2.7) 

then the system is uniformly stable. 

Proof. get Q(t) = ftrC(r)'C(r)dr. From condition (2.7) and Lemma 6, the 
existence of a positive definite Lyapunov-Krasovskii functional V is guaranteed, 
with 

CV(xt) <_ o. (2.s) 
The stability of the trivial solution follows then by Theorem 3. m 

T h e o r e m  8. Consider the system (2.1). If  there exists a pair of positive definite 
(symmetric) matrices P and R, and a nonsingular matrix function C(-) : [0, T] --~ 
]R n×n, satisfying 

such that 
T 

X P  + PA + R + ~o [C(v)C(T)' + PB(r)C(v)- lC(r)-T B(T) IP] d~- = 0, (2.10) 

then the system (2.1) is uniformly asymptotically stable. 
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Proof. We already established in Theorem 7 the positive definiteness of the func- 
tional (2.2) with Q(t) = f T C(T)'C(T)dT. Bounding the other way: 

v(¢) _< ¢(0) 'P¢(0) + ¢(O)'Q(-O)¢(O)dO 
T 

f < l¢(0)[2Amax(P) + meax 1¢(o)12 Amax(Q(-0)) dO 
T 

<__ 11~112 [Amax(P)-bfoTAmax(Q(O))dO]. (2.11) 

By the choice of Q: 

Amax(Q(O)) <-AmaX [foTC'cdT] . (2.12) 

Hence we get in (2.11) 

V(~b) < [[~b[[ 2 Amax(P) + T.~max (2.13) 

showing that under the given conditions V also has infinitesimal upper bound. 
Finally, by Lemma 6, we have now: 

L(x,) < -x,(0)'R~,(0)  
__~ -[~gt (0)12 [*~min (R)] (2.14) 

Thus, under the given conditions the trivial solution is asymptotically stable by 
Theorem 4. m 

3 Robust Stability and Frequency Domain Criteria 

The basic conditions obtained in the previous section involve an algebraic Ric- 
cati equation of the form A'P + PA + R + Q1 + PQ2P = O. The difference with 
the Riccati equations in the LQG theory is that the quadratic term appears with 
the plus sign. This type of Riccati equation is known to appear in robust con- 
trol theory. In fact, the specific time dependence of the weight matrix B(.) and 
the exact support [0, T] of the distributed delay are immaterial in the sufficient 
conditions that were derived. This makes room for robust stability conditions. 
Indeed, the theorems stated in section 3 may be rephrased as robust (asymp- 
totic) stability theorems. In particular we have the following definition, which 
allows to generalize the above to robust stability criteria: 
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Def ini t ion9.  Let B E IR nxn be symmetric and positive definite. The 
distributed-delay differential system (2.1) is B-robustly stable (respectively ro- 
bustly asymptotically stable) if the equilibrium solution is stable (respectively 
asymptotically stable) for all bounded delay intervals [0, T], and weight matrix 
functions B(-) : [0, T] -+ IR ~x~ satisfying 

fo T B(t)B(t)' fo T min dt t3(t) dt < 3. (3.1) Z(t) 

Definition 9 selects one particular functional of the exact form of the delay 
distribution matrix B(.). Robust stability is then expressed for a class of weights 
in terms of the evaluation of this functional, and the precise shape of B(.) can be 
'forgotten'. Also it is assumed that the delay is bounded, but the precise value 
of the bound T is immaterial. 

T h e o r e m 1 0 .  The distributed delay system (2.1) is B-robustly asymptotically 
stable if there exists a positive definite matrix P such that 

A'P + PA + I + PBP < O. (3.2) 

Proof. It follows from (3.2) that the conditions of Theorem 8 are satisfied with 
g(t) = X / - ~ I  > 0, such that f /g ( t ) 'g ( t )  = f / 3 ( r ) d r  = 1, since then also in 
Definition 9 

fo r B(r)B(T)' PBP > P f3(r) dr P. 

Corol lary  11. The distributed delay system (2.1) is B-robustly asymptotically 
stable if A is stable, and 

sup l ] ~ w I  - A]-IB1/=tl < 1. (3 .3 )  
03 

Proof. This is a direct consequence of the strict bounded real lemma [12, 13] 
applied to (3.2), and provides an extension to the frequency domain robust 
stability criterion for delay systems, developed in [9]. rn 

4 S t a b i l i z a t i o n  w i t h  D e l a y e d  F e e d b a c k  

We return now to the model for the delay perturbed control, (0.4), and apply 
the robust stability criterion obtained in the previous section. The A and B(T) 
in the general theory are respectively replaced by A - ABK and BK#(-r). 
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4.1 Sufficient Condi t ion  

The bound of Definition 9 gives with the above B(r), 

B T 2 f0 T = min f B K K ' B # ( T ) " d 7  /~(r)dT 
Jo 

2 

= B K K I B I ( I _  A)2, (4.1) 

• • • T since fl(r) = t#(r)[ is the mmlmlzer of j~ ~ dT f [  ~(T)tiT. Consequently, the ~(r) 
frequency domain criterion (3.3) from the Corollary 11 is then, identifying B 1/2 
with the form (1 - A)BK, 

1 (4.2) sup [l[jwI - A + A B K ) - I B K t l  < 1 -----~ 
O3 

Some standard matrix simplifications lead to 

tl (sI  - A + A B K ) - I B K  ]1 = H [(sI - A)(I  + A(sI - A ) - I B K ) ] - I B K  [I 

= I[ [I + A[(sI - A ) - I B K ] - I ( s I  - A ) - I B K  [I 

= I[ [I + Ago(s)]-tgo(s)II (4.3) 

where Ko(s) de__f (SI -- A ) - I B K  is the nominal return ratio. Restricting s = jw, 
we have thus proven the following : 

T h e o r e m  12. Consider the open loop system ~ = Ax + Bu, with a stabilizing 
nominal state feedback control gain K.  If the feedback control is perturbed by 
delay as in (3), then the system is robustly asymptotically stable for all values of 
)~ in the interval [0, 1] for which 

sup(1 - A)[[ [ I  + A K o ( j w ) ] - l  Ko ( jw)  II <- 1 , Ko(s )  = ( sI  - A)-I  B K  
o) 

is satisfied. 

Multiplying both sides by A, the criterion can also be restated as 

A 
sup~ [l[I + K(jw)]-IK(jw)[I < 1----~'- (4.4) 

where K(jw)  = AKo(jw). The left hand side is the transfer matrix from refer- 
ence to control input due only to the instantaneous state information, thus with 
the reduced gain AK, and the delay part removed from the loop. 
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The criterion of Theorem 12 can be expressed in the alternative form by 
applying Woodbury's  (matrix inversion) lemma to the left hand side: 

[I + )~Ko(s)]-l Ko(s) = (s I  - A ) - I  B[ I  + ,~K(s ) ] - lg ,  (4.5) 

Note that K(s)  de__/K(sI - A ) - I B  is an m x m matrix. The criterion is: 

sup(1 - ~ ) H ( j w I -  A ) - I B [ I  + X/~(jw)l-lKll _< 1. (4.6) 
~o 

In the single input case, using lower case k and b respectively for K and B, the 
left hand side of Equation (4.5) reduces to: 

[I + )~go(s)]- lgo(s)  = 
1 + 

with the robust stability criterion: 

sup (1 - ~)It(jwI - A)- lbl l  Ilkll < 1. 

I1 +  k(J )l - 

( s l  - A ) - l b k  (4.7) 

(4.s) 

4.2 A l t e r n a t i v e  C r i t e r i o n  and  a N e c e s s a r y  C o n d i t i o n  

Based on results by Maciejowski in [15], we may proceed differently: 

Let Go(s) = (sI  - A ) - I B  be the open loop transfer function from input 
to state. Consider the delayed feedback as a perturbation of the nominal static 
feedback gain. The exact transfer function of the feedback part, i.e. the "gain" 
system from state x(t)  to the feedback control Ky( t ) ,  is, with (3): 

F(s )  = [)~ + (1 - .k)mo(s)]g 

= [1 + ( 1 -  A)(m0(s) - 1)]K 

= [1+ A ( s ) l g  

= [1 + (1 - A)Ao(s)]K (4.9) 

where mo(s) is the Laplace transform of the compactly supported normalized 
( f [  Ii~o(t)l dt = 1) scalar shape function #o(t). Defining #o(t) for t > T to be 
zero, the extension has Laplace transform 

too(s) = fo #°( t )e-" t  dt = p~o(t)e -s t  dt. (4.10) 

The delay perturbation term is the convolution of the state with ju(t) = (1 - 
A)/~o(t). Since the support of # is finite, its Laplace transform is not rational 

1 - - e  - a T  
in general. (E.g. if/zo(t) = -~ in [0,T], then too(S) = sT .) We shall now 
restrict attention to the class of shapes ~0(t) for which Go(s) = (sI  - A ) - I B  
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and G(s) = Go(S)(1 + A(s)) have the same number of unstable poles. So since 
the loop is stable for AI = 0, it will remain stable provided the number of 
encirclements of - 1  by the characteristic loci of GoF remains unchanged. This 
means that for any permissible F and any w. 

det[I + G(jw)F(jw)] ¢ O. (4.11) 

Adapting the derivation in [15, p. 115] slightly, it is easily seen that this is implied 
by 

1 
II Go(jw)g[I + Go(jw)g] -1 I] < 

1 1 
= ( 1 -  A) HAo(j~)II" (4.12) 

It is important to note that the sufficient condition for stability is also necessary 
if all permissible perturbations may actually occur. The problem with this ap- 
proach is that the precise information on #(t), necessary to compute IIA0(jw)H, 
may not be available. The Ll-norm f o  I#(t)t dt may be an easier statistic to 
bound. One case however is quite interesting: this is the case where the system 
has a single input, analyzed in the next section. 

5 S i n g l e  I n p u t  Case:  F r e q u e n c y  R e s p o n s e  T e s t s  

The stabilizability by feedback of the state is analyzed, in case the state is 
perturbed by delays (e.g., due to multipath). The criteria derived in the previous 
section lead to interesting graphical methods, permitting to derive the stability 
margins (margin on A) in a straightforward way. A set of conditions based on 
Theorem 8 are first derived for the case where only a time domain bound is 
known. Next, invoking Rouch~'s theorem, criteria are derived in case additional 
bounds in the Laplace domain are known. It is shown that the delay perturbation 
stability margin can be derived from a single Nyquist plot (of k(jw)), or more 
precisely, its location with respect to a fixed circle bundle in the complex plane. 
This is reminiscent of the classical closed loop frequency response analysis with 
the M-circles. 

5.1 Frequency Sweep 

To fix the ideas, assume that a deterministic finite dimensional, single input 
unstable system 

= Ax + bu (5.1) 

is controlled by feeding back the available state information y(t) over a gain 
k. As typical in control involving a communication link, let this available state 
information be a delay perturbed version of the instantaneous state, i.e., 

y(t) =  x(t) +  (r)x(t - r) dr, (5.2) 



128 Graphical Test for Robust Stability 

with "total weight" 

~ T [#(T)[ d7 = 1 - A, e [0, 1]. (5.3) for A 

Applying the Corollary 11 in Section 4 to these dynamics, one finds that the 
delay perturbed system is asymptotically stable if the matrix A -  Abk is Hurwitz 
(i.e. stable), and 

1 
sup [I ~ I  - A + Abk]-lbk [] < 1 ~ ;  (5.4) 

o) 

This leads to the following robust stability margin. 

T h e o r e m  13. The scalar system (5.1-5.2) with feedback u = ky is robustly stable 
with delay margin Ao if VA E [Ao, 1], the matrix A - Abk is Hurwitz stable and 

Ao = sup [M(jw) - ~ M ( j w )  2 - N(jw)1,  
~d 

(5.5)  

where 

M(s) = l(s)2 + Rek(s) (5.6) 
t(s)2 -Ii(s) l:  

l ( s )  2 - a (5.7)  
N(s) = l (s )  2 - l ~ ( s ) ]  2,  

and 
l ( s )  = Iikl[ II(sI - A) -~b l l  (5.8)  

Proof. From (5.4), or equivalently (4.8), robust stability holds for A such that 

Vs = j w :  Hk]]ll(sI- A)-%H ( 1 -  A) < ]1 + Ak(s)]. (5.9) 

With l(s) as defined in (5.8) this gives 

~2[l(8)2 - lk ( s )? ]  - 2~[1(8) ~ + Re  k(~)] + [l(~) 2 - 1] < 0. (5 .10)  

The coefficient of )t 2 in (5.10) is nonnegative since 

[/¢(s)[ 2 = [ k ( s I -  A)- lbt  2 
< HkH2[[(sI - A)-lb[] 2 = l(s) 2. (5.11) 

With M(s)  and N(s)  as defined in the theorem statement, the inequality (5.10) 
is equivalent to 

A 2 - 2AM(s) + N(s)  < 0. (5.12) 

This quadratic polynomial in (5.12) has real roots iff the discriminant condition, 

M(s)  2 - Y ( s )  > 0 (5.13) 



Time-delay Systems 129 

holds. By assumption the dosed loop is asymptotically stable in the (delay free) 
nominal case. Hence for A = 1 the inequality (5.4) holds for all w and one has 

1 - 2M(s) + N(s)  < O. (5.14) 

By continuity, there must exist a neighborhood for A = 1 for which the dis- 
criminant condition (5.10) holds. In view of (5.14), the discriminant of (5.12) 
satisfies, 

M(s) 2 - N ( s )  > M ( s ) 2 - 2 M ( s ) + l =  [ M ( s ) - l ) ]  2] >0 ,  (5.15) 

This implies the existence of real roots A+ and A_ in a neighborhood of 1 
(Condition (5.4) is necessary in the delay free, i.e. A = 1, case.) Consequently, 
A_ < 1 < A+, with 

A+(s) = M(s)  + ~/M(s) 2 - N(s)  > M(s)  + IM(s) - 11 > 1 (5.16) 

A_(s) = M(s)  - x /M(s )  ~ - N(s )  > M(s)  - IM(s) - 11 < 1. (5.17) 

The set of values for A in [0, 1] for which robust stability holds is consequently 
bounded by sup~ A_(jw), the margin Ao for the delay perturbation. D 

Comments One can plot a frequency sweep of A_ (jw) and determine sup A_ (jw) 
graphically, thus obtaining the margin Ao for the delay perturbation. Note that 
the quadratic form (5.10) degenerates to a linear form if/(s) 2 = l~:(s)l 2. This 
will be illustrated in the examples below. 

5.2 Cr i t er ia  B a s e d  o n  R o u c h ~ ' s  T h e o r e m  

Consider now the more direct alternative approach which requires some Laplace 
domain information about #(t) in addition to (5.3): 

The closed loop characteristic equation for the single input case is first rewrit- 
ten as 

det [sI - A + Abk + (1 - A)mo(s)bk] = O, (5.18) 

which can be brought to two equivalent forms, using again a(s) = det(sI - A) 
and "k(s) -- k ( s I  - A)-lb: 

[1 + + (1 - A) (mo(s )  - = o, (5.19) a(s) 

and r 
a(8) A~(s) [1 + + (1 - A)mo(s)k(s)J = O. (5.20) 

These two forms will be treated separately with different simplifying assump- 
tions, as we shall not assume full knowledge of mo (s). Invoking Rouchd's theorem, 
either form leads to a sufficient condition for robust stability with delay margin 
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and results in a graphical test. 

Recall from classical control theory (see a brief review, e.g. in [15]) that the 

loci where the closed loop gain k(~) { is constant are the so-called M-circles l+k(s) { 
in the k(s)-complex plane: they form a circle bundle with centers at 0 (closed 
loop gain 0) and at - 1  (closed loop gain infinite). Let Adm be the domain 

{s 11T~T[ -< m} bounded by the M-circle 11~Im. This is the domain containing 

the origin. 

For the first result of this type, introduce also the transfer functions A(s) 
and Ao(s ) defined by A(s) = (1 - A)A0(s) = (1 - A)(m0(s) - 1). 

T h e o r e m  14. The system (1-3) is robustly stable with delay margin %o if there 
exist 5o > 0 and a > 0 such that 

1 
Ao = 1 - 7--  > 0 (5.21) 

Ooa 

and 

i) "k(jw) = k ( j w I -  A)- lb  encircles the point - l  + jO np times counterclockwise 
(CCW), where np is the number of unstable open loop poles (provided there 
are no hidden modes). 

ii) mo(jw) lies in the disk C1,6o, centered at s = 1 + jO and with radius 50. 
iii) "k(jw) lies inside the domain .h4~ (which is the outside of the bounding M- 

circle). 

Proof. Condition i) is simply the Nyquist criterion and expresses stability for 
the nominal (delay free) closed loop system. By Rouch~'s theorem, the number 
of zeros in the right half plane of a(s)[1 + k(s)] and (5.19) are equal if 

< {I (5.22) 

Hence the delay perturbed system is stable if 

:(s)  1 
1 + :(s)  < l.Jo(s){ (i - -  A)" 

(5.23) 

With the confinement condition ii), IA0(s){ < 50 is satisfied, so that stability 
holds for all A E [0,1] for which the Nyquist plot of k(s) is confined to the 
domain A4a. With all conditions satisfied one may conclude that the nominal 
feedback is also stable with delay perturbation Ao, assuming of course the asymp- 
totic stability of the nomimal feedback. Since ~ is monotonically increasing, 
it follows then that stability holds for all ~0 < A < 1. m 
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With a uniformly distributed delay #0(t) = -~ in [0, T], one obtains mo(s) = 
l_e-aT sT and its Nyquist plot is contained in the disk Cl,a0 with a0 = 1.259591. 
The extremal point on the Nyquist plot occurs for wT = 4.08557. 

The statement and derivation of the second criterion are very similar: This 
time, use the form (5.20) for the characteristic equation. Thus if 

l(1 - ~)'k(s)mo(s)t < 11 + ~ ( s ) l  (5.24) 

then it follows again from Rouch6's theorem that the perturbed closed loop will 
be stable if a(s)[1 + ),k(s)] has no zeros with positive real part; i.e., a(s)[t + 
Ak(s) + (1 - A)'k(s)mo(s)] and a(s)[1 + Ak(s)] have the same number of zeros 
in the right half plane. These are the poles of the closed loop system. Since for 
8 ----~ j W  

/0 # Imo(s)l < I~o(t)e-"tl dt = l#o(t)l dt = 1, (5.25) 

condition (5.24) is satisfied if 

(1 - A)lk(s)l < I1 + Ak(s)l (5.26) 

or, equivalently 

1 ~k(s) ~ (5.27) 
+ Ak(s) < 1---L-~ 

Finally, note that the set of Ak(s) for which the above inequality holds is the 
domain M__~_ x bounded by an M-circle M _ ~ .  The corresponding domain for 

k(s) is obtained by the scaling -~, i.e., 

~(s) e M__~  deal Z:x. (5.28) 

The right hand side, being a conformal transformation of the M-bundle, consti- 
tutes another circle bundle of 'L-circles' (L for lambda). The boundary of £~ is 

1-x This bundle is tangent to a circle with center (l_~X~x,0) and radius Rx = tT'zgXI" 
the vertical through -1 .  The/ :-bundle is shown in Figure 1 for A = 0 to A = 1 
in increments of 0.5. We conclude: 

T h e o r e m  15. The system (1-3) is robustly stable with margin ~o if: 

i} "k(jw) = k ( j w I -  A) - lb  encircles the critical point -½ + jO, np times CCW, 
where np is the number of unstable open loop poles (provided there are no 
huidden modes). 

ii) k(jw) lies inside the domain Z:xo. 
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L-circles 

/ 

( 
-10 

.4 

-5 0 5 10 

Fig. 1. The £:-bundle 

Remarks: i) The first condition in the theorem again guarantees the asymptotic 
stability of the nominally designed closed loop system (with state feedback gain 
k). 
ii) Unlike the previous theorem, this theorem in fact does not assume further 
(Laplace domain) conditions on #(t), since the bound (5.25) is automatic. 
However supplemental information about/ to may enable to set a more precise 
bound in (5.25). With this information one could relax condition iii) somewhat 
as was done in Theorem 14. 
iii) Recall that  a stability margin ~0 for the delay perturbation means that  the 
system is stabilized for all delay perturbations with A >_ A0. 
iv) Note finally that  in order to guarantee stabilizability of an otherwise unstable 
system with this method, it is essential that  the input y(t) contains a delay-free 
version of the state x(t), i.e., it is essential that  ,~ > 0. This is an artifact of the 
sufficiency of our condition, it may not be necessary. 

6 E x a m p l e s  

We illustrate in this section the ease with which the various criteria can be used. 

Example 1. Consider the multivariable second order system with 

A =  0 - 0 1 ' 1 - " 
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The nominal closed loop dynamics are given by 

133 

- 2  1 ] (6.2) 
AFB= --1 0 " 

which has a double pole at -1 .  Notice that (AFB, B) is in the observer canonical 
form. The norm of (1 -A) [ I  + AKo(s)]-lKo(s) is displayed as a two dimensional 
surface in function of delay perturbation A and frequency w. Figure 2 shows 
the 3D plot. For the same system, Figure 3 gives the contours for the norm 
(1 - A)[[ (jwI - A)-IB[I + AK(s)]-IK I[. The critical level is of course level 1. 
It is readily seen that for A > Ao = 0.681 the norm remains below 1, hence 
indicating robust stability. The delay margin can be found interactively using a 
mathematics package. One gets A0 = 0.681. We have also computed the delay 

Delay perturbation - Frequency 

lambda 1 0 

Fig. 2. 3-D plot of the norm as function of A and w for Example 1 

margin for some different feedback gains, but all such that the closed loop has a 
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0.9: 

level lines 

0.85 ,,, 

0 , 8  

~ 0.75 

0 0.5 1 1.5 2.5 3 
omega 

Fig.  3. Level lines for the norm as function of A and w for Example 1 

double  pole a t  - 1 :  

[3 2] 1-2 '1 K = - 1  - 1  =~ AFB = 1 0 ~ A0 = 0.708 

[ 12] [o ,] 
K = - 1  1 ::~ A F B  = 1 --2 ~ A0 = 0.891 

[, o] [0 ,] 
K = 1 1 --*. A F B  : --1 --2 ~ A0 = 0.834 

[~ 9] [, ,o] 
K = 0 0 ~ AFB = 0 --1 =~ A0 = 0.911 

[2 ,,] [,  ,0] 
K = 0 0 ~ A F B  = 0 --1 =~ Ao = 0.924 

[2 o] [1 ,] 
K = 0 0 ~ A F B  : 0 --1 ==~ A0 : 0.750 

[2 ,] i1 o] K = 0 0 :v  AFB = 0 - 1  ~ Ao = 0.764 

(6.3) 



Time-delay Systems 135 

The last four cases correspond with a single feedback (m = 1). It is obvious 
that  the the additional degrees of freedom can be exploited to obtain the best 
possible delay margin (the smaller A0 value). 

Example2. Consider a single input system. For comparison, take the system 
from example 1, but with input matrix 

1 

We compute the delay perturbation margin Ao = sup~ A_ (jw). In this case, with 
feedback gain (kl, k2) but constrained by the requirement that the closed loop 
poles are at -1 ,  we get: 

d e t [  1-k10 1 - : 2 ]  = ( s - 1 ) 2  ~ -  { kl=2k2arbitrary. (6.5) 

Then the matrix A -  Abk has eigenvalues 1 -2A and -1 ,  and A -  Abk is Hurwitz 
for A > 0.5. Using Theorem 13, we also derive 

- 2 ( 1  + 
k(j ) - 

1 +w ~ 

From these, it is straightforward to compute 

A_(jw) = 2 + k~ - X/4 + k~(1 + w 2) (6.6) 

Obviously the supremum is attainable for w = 0, and gives 

= 2 + - + 
' (6.7) 

a delay margin A0(k2) which is symmetrical in k2. This delay margin Ao is given 
as function of k2 in Figure 4. Note that for k2 = 0 the quadratic form (5.10) 

3 - 4 A - w  2 degenerates to a linear one: ~ < 0, yielding A > 0.75. It is clear from 
Figure 4 that  this gives the best robustness (smallest ~o) margin. 

Example 3. Let fro(t) = ~e -zt ,  and T --~ oo. Since T is no longer bounded, the 
delay margin based on the Lyapunov-Krasovskii theory is strictly speaking not 
applicable. In this case the shape function is mo(jw) = --g--- and IAo(jw)l = f~+j~ 
[mo(jw)- 11 = ~ < 1. The condition ii) in theorem 14 (or the more general 

statement (37)) is satisfied. By Theorem 14 stability is deduced if 

-~{Go(jw)g[I + Go(jw)K] -1 } < x//~2 ÷ w2 1 (6.8) 
w I -A"  
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rambda_(O)  

0 .92  , , , " , , ' , , r 

0 .9  

0.88 

0.86 

:o-: 
0.78  

0 1 2 3 4 5 6 7 8 9 10 

k 2  

Fig. 4. Delay margin Ao as function of the gain k2 in Example 2 

As a simple illustration, consider the simple scalar case with A = 1, B = 1 and 
nominal gain K = 2. The left hand side of condition (6.8) equals 2 and 
the condition can be rearranged to 

4(1 - A) 2 < (/32 + w2)(1 + °a2) (6.9) 
~d 2 

The right hand side of the above is maximal for w 2 =/3, thus 

4(1 - ~)2 < (1 +/3)5. (6.10) 

This gives the delay perturbation margin A0 = I~__E. Note that  if/3 -+ 0, stability 
remains guaranteed for A > ½. We emphasize that  we have here assumed that  
the weight #(t) was exactly known, which is quite unrealistic. Using the more 
conservative Theorem 14 for the same problem we can only guarantee robust 
stability for A > ¼. If the graphical method of Theorem 15 is used with the 
£~-domains, note that  the Nyquist plot of k(jw) = ~ 2  coincides with the L- 

circle for A = ¼. Again the margin A0 = .75 guarantees robust stability for all 
perturbations confined to £3/4. 

Now for this simple case the explicit solution may be obtained through 
Laplace transforming the perturbed equation. Because of the infinite delay the 
Laplace transform of x(t) is rational. Indeed, with x(8) = 0 for 8 < 0, but 
x(0) ~ 0, the system equation 

:b = x - 2)~z - 2(1 - .~) /3e -~x( t  - r)  dr, (6.11) 
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transforms to 

sX(s) - xo  = (1 - 2A - 2(1 - A) s + - - ~ X ( s  ).  (6.12) 

from which in turn 

s + / ~  (6 .13)  
X ( s )  = s2 + (2), - 1 + 8)8 + 8 =0. 

Clearly, the solution is stable for 

1 - / ~  
A > ~ (6.14) 

The limit for fl --+ 0 gives the exact stability margin (AO)exact = ½. This illus- 
trates that the margins obtained by the graphical methods may still be quite 
conservative. If one formally applies the criterion from theorem 12, the bound 
Ao = 4 3- results as well. 

Example4 [17]. Consider the double integrator t) = v, ~) = u, with nominal 
feedback klv + y. The Nyquist plots for kl = 1, 1.5 and 2 are superimposed on 
the f-bundle in Figure 5. The larger kl, the lower the guaranteed margin A0, 

1 and the more robust with respect to delay perturbations. In this example A0 = 
is a limit to the guaranteed performance. As the conditions are only sufficient, 
the actual margin may still be greater. 

L-bundle and Nyquist plot of k(s) 

-10 -5 0 5 10 

Fig. 5./:-bundle and Nyquist plots for Example 4 
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7 Conclusions 

We have studied the stability properties of a linear system with distributed delay 
parameters. Our main results are sufficient conditions for stability and asymp- 
totic stability in terms of solvability of certain Riccati equations. Via the positive 
real lemma, frequency domain criteria were derived as well. The conditions were 
such that  the precise form of the weight matrix function and the effective extend 
of the delay are immaterial. These results led then to conditions for robust sta- 
bility of distributed delay systems. In turn, these were applied to the problem 
of stabilizability of systems with delay perturbation in the feedback in case time 
domain information (bounds) is known for the weight function. With additional 
information in the frequency domain another criterion was derived in terms of a 
containment conditions on the Nyquist plot of the total loop transfer function. 
If all perturbations can occur theses conditions are also necessary. The graphical 
tests are easily performed, as only one plot needs to be generated and compared 
against a certain circle bundle (reparametrized M-circles, or the newly intro- 
duced L-circles). In all instances, it was shown that  as long as a pure delay free 
state is present in the corrupted signal, stabilizability is ensured whenever the 
system is stabilizable with instantaneous state feedback, This proves another 
robustness result with respect to delayed feedback. It can be shown that  if the 
weight matrix function B(.) is impuIsive~ the conditions of robust stability for 
systems with multiple delays are retrieved [8, 9, 10]. Future research will involve 
incorporation of the multivariable Nyquist criteria [15~ 16] in case the shape 
factor is a matrix, instead of simply a scalar. Also the effect of stochastic per- 
turbations should be investigated as stochasticity is another way of expressing 
uncertainty and nonreproducibility in the behavior of a system. 
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Abstract .  The author presents a method for determining the stability 
exponent and eigenvalue abscissas of a linear delay system. The method 
is based on examining the endpoint values of the solution to a functional 
equation occurring in the Lyapunov theory of delay equations. The ques- 
tion of existence of the solution to this functional equation is examined 
in more detail than in the previous delay systems literature. Numerical 
examples are given, including one in which we show that the decay rate 
of a feedback system can be improved by delay feedback. 

1 Introduction 

In this chapter the author develops a method for very accurate determination of 
the stability exponent for any delay - differential system of the form (*) xl(t) = 
Aox(t) + A l x ( t - h ) .  Here h > 0 is any positive real number, and A0, A1 E IR nxn. 
In addition, we will show how to find the other eigenvalue abscissas in the order 
in which they naturally appear. For simplicity, the theorems are given for the 
case in which the system has a single delay h as above. Nonetheless, except for 
notation and computational size, there is nothing to keep the development from 
being carried over to the case of multiple commensurate delays. 

Theorems giving criteria for the stability of linear autonomous delay - dif- 
ferential systems date at least to the work of Pontryagin [18]. For extensive 
bibliographies as well as many basic theorems on stability, one can consult the 
books by Hale and Lunel [6], Bellman and Cooke [1], and Diekman et al [4]. 
One need hardly mention that  the systems and control literature is replete with 
theorems on the stability of functional differential equations [11, 12, 14, 17, 19]. 
It is something of a wonder, then, that  the study of the precise stability expo- 
nent in delay - differential systems has received such scant attention [16]. Up 
until now, there has been very little in the way of analytic work leading directly 
to a procedure for determining the stability or growth exponent, or any other 
eigenvalue abscissas, such as given in this chapter. 

Our approach will be based on the analysis of a quadratic functional 
which is analogous in the theory of delay equations to the quadratic func- 
tional R(x)  = x T P x  in ordinary differential equations, where P is the matrix 

* This work was supported by the NSF ( USA ) under Grant Number DMS - 9500565. 
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P = f o  e(tAr)e(tA)dt for any asymptotically stable matrix A, and otherwise P 
is the solution of the matrix Lyapunov equation A*P + P A  + I = O. Authors such 
as Infante and Castelan [8, 9], Datko [3], and Marshall et al [15] have written on 
the extension of this concept to the delay systems area. The main technical chal- 
lenge for us will be to find those properties of the functional R(x)  which carry 
over to this area while allowing us to focus on the system eigenvalue abscissas. 
After making definitions and introducing notation, we proceed in Section 2 to 
give the basic matrix function which will be used in the analysis, focusing on 
the case in which the delay system is asymptotically stable. There are different 
ways of defining this matrix function, which in our case will be defined by way 
of a boundary value functional differential equation. In Section 3 we examine 
a question involving the existence of this matrix function when the delay sys- 
tem is allowed to be unstable. Here we show that the same defining boundary 
value functional equation will have a unique solution provided only that a cer- 
tain determinant is nonzero, and we give a counterexample in the case of zero 
determinant. In Section 4 we use this matrix function to construct a quadratic 
functional analogous to R(x) ,  and to give a theorem showing that, in the abscissa 
parameter, eigenvalues of a delay system generate poles of the endpoint values of 
this matrix function. This is the main theorem of the chapter, and immediately 
afterward, in Section 5, we will be able to give a simple numerical procedure for 
accurately determining eigenvalue abscissas. In Section 5 we also give examples, 
including one in which we measure the performance improvement obtained over 
a quadratic optimal controller when one uses induced time delays, with improve- 
ment measured in terms of the decay rate. In Section 6 conclusions are given 
and some directions for future research are suggested, especially as regards the 
possibility of speeding up the computations associated with this procedure. 

2 The  Matr ix  Function 

In this section we introduce the matrix function we will use in our analysis of 
the system stability exponent and other eigenvalue abscissas. Although in the 
following section we show that asymptotic stability is not required to define this 
function, it will be easier to motivate the associated boundary value functional 
equations if we first examine the case of an asymptotically stable system. This is 
the route usually taken, and in fact the theorems in the next section constitute 
new information on the functional equations. For comparison, one can consult 
the works mentioned in Section I. 

Consider the delay - differential equation (*) x'(t)  = Aox(t)  + A l x ( t  - h), 
where A0, A1 E lit n×n and h > 0. Let X( t )  denote the solution to the matrix 
delay equation X ' ( t )  = AoX( t )  + A 1 X ( t  - h) having initial data X ( u )  = 0 
for - h  _~ u < 0, and X(0) = I. Now let f ( s )  = [ s I - A o -  Axe-Sh[, let 
M ( s )  be the Laplace transform of X( t ) ,  i.e. M ( s )  = ( s I  - Ao - A l e - sh )  -1, 
and recall that the condition that f ( s )  has no zeros in the closed right half -  
plane Re(s)  > 0 is equivalent to exponential asymptotic stability for the sys- 
tem (*). In this case of exponential asymptotic stability, we introduce the 
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. . o o  T matrix function ~?(a) = fo X (t)X(t - a)dt, defined for each a CIR.  Not- 
ing that  X(.) E L2(-oo,  oo), and that for the Fourier transform of X(.) we 
have F{X(.)} = 1 • 4 ~ M ( , w ) ,  one will find by a use of Parseval's formula 
that  t?(a) = 1 oo f~_~ M*(iw)M(iw)e-~adw. Thus we can immediately see that  

oT(a) = O*(a) = #(--a) for all real a. With t~(.) = Q(.), we have : 

QT(a) = Q(-a) .  (2.1) 

It is straightforward to give a type of two point relation satisfied by 0(.). In 
fact, we begin with the formula X'(t) = X(t)Ao + X( t  - h)A1, valid for t > 0+. 
Multiplying both sides on the left by xT( t ) ,  we obtain 

x T  (t)X'(t) = x T  (t)X (t)Ao + x T  (t)X (t - h)A1. 

Transposing, we find that  

( x ' )T  (t)X (t) = ATo x T  (t)X (t) + AT x T  (t -- h)X (t). 

Adding, we easily see that  

( x T  x) ' ( t )  = AToxT(t )X( t )+xT(t )X( t )Ao+AT X T ( t - h ) X ( t ) + x T ( t ) X ( t - h ) A 1  

for t > 0+. 
Integrating over [0+, oo), we find that  the following is satisfied with ~(.) = 

Q('): 

- I = AToQ(O) + Q(O)Ao + ATQT(h) + Q(h)A1. (2.2) 

It is also straightforward to show that ~(-) is differentiable over I R -  {0}, 
and to give a functional differential equation for 0(.). In fact, since X(.) de- 
cays exponentially, and is differentiable over (0,c~), one can apply a some- 
what routine analysis with differentiation under the integral, and show that  
~'(a) = - f o  xT ( t )X ' ( t  - a)dt for a < O. Noting that  X'( t  - a) = X( t  - 
a)Ao + X( t  - a - h)A1, we find that  ~'(a) = -~(a)Ao - tg(a + h)A1 for a < O. 
Now writing ~(a) = oT(--a) for a > O, we have ~'(a)  = ( - ~ ' ( - a ) )  T, so that  
O'(a) = ATOT(--a)+ AToT(--a+ h) = ATO(a)+ ATO(a--h) for a > 0. We have 
arrived at the following functional differential equation satisfied with ~ (.) = Q (.): 

Q'(a) = -Q(a)Ao - Q(a + h)A1 for a < 0 (2.3) 

Q'(a) = AToQ(a) + ATQ(a--  h) for a > 0. (2.4) 

Proceeding carefully with differentiation under the integral, one can use the 
ideas above to show that  the matrix function 0(a) is both left differentiable and 
right differentiable at a = 0, with right derivative 0 '(0+) = - I  - ~(0)Ao - 
~(h)A1, and left derivative ~ ' (0 - )  = -~(0)A0 - O(h)A1. From this and the 
equations (2.3)-(2.4) we see that  zg(.) is continuous throughout lit. 

Starting with these differential equations (2.3)-(2.4), and requiring (2.1), one 
can write an interesting system of ordinary differential equations for the pair 
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Q((~),R(a) = Q ( a - h ) .  In fact,  for 0 < c~ < h, we find since a -  h < 0 
t h a t  R' (a)  = Q'(a  - h) = - Q ( a  - h)Ao - Q(a)A1 = - Q ( a ) A 1  - R(a)Ao.  
Likewise, we can set W ( a )  = Q(a + h) for - h  < a < 0, and find t h a t  W'(a )  = 
A T w ( a )  + ATQ(a) .  Thus ,  wi th  R(.)  = Q(.  - h) and W(. )  = Q(.  + h), we have  : 

For - h  < a < 0: 

and  for 0 < a < h: 

Q ' ( a )  = - Q ( a ) A o  - W ( a ) A a  

W ' ( a )  = ATQ(a)  + A T w ( a )  (2.5) 

Q'(a) = ATo Q(a) + AT R(a)  

R'((x) = -Q((~)A1 - R(~)Ao. (2.6) 

For a e [ - h ,  h], we can de te rmine  any cont inuous Q ( a )  sat isfying (2.1) - 
(2.4). We begin wi th  R(~)  = Q(c~ - h) = QT(h -- a ) ,  and  use R(O) = QT(h) as 
a b o u n d a r y  requ i rement  as well as in the  bounda ry  equat ion (2.2). P rov ided  the  
assoc ia ted  de t e rminan t  is nonzero,  we wilt have the  values of Q(0) ,  R(0) ,  and  so 
will have  the  solut ion to  (2.6) for 0 < a < h. Finally, we set  QT(a) = Q ( - ~ )  for 
- h  <: ~ < 0. We explain these details below, not ing t ha t  they  will have special 
value in Sect ion 3. 

First ,  it will be  convenient  to in t roduce the  e lementary  t r ans fo rmat ions  ~, ~o : 

m l  

]R n×n ~ ]R n2, which we define for member s  M = " = [#1 . . .  #hi of  

m n  

m T #a 

]R nxn by ~ M  = : , ~°M = " 

T 
m n I, Zn 

We also consider  the  t r ans fo rma t ion  X : ]RnXn ~ ]Rn2×n2 by  x ( M )  = 
I ® #  T 

: , where  I = In and ® denotes  the  Kronecker  product .  I f  we now 

I ® # ~  
write q = ~Q, r = ~°R, then the above system (2.6) of differential equations, 
t aken  over  [0, hi to  emphas ize  b o u n d a r y  continuity,  can be wr i t t en  as 

Thus  

r ' (a)  = J r(a) , with J =  - x ( A 1 )  - A  T ® I  . (2.7) 

RT(o) = Q(h), so t h a t  ~°R(O) = ~Q(h) ,  i.e. r(O) = q(h). For 2k x 2k mat r ices  

n l  n l  /tk-i-1 

N = " , we wri te  P+ (N)  = " , P_  (N)  = " , and we see t h a t  

n2k /~k /~2k 
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form. Now note that equation (2.2) can be written as 
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= 0 in homogeneous 

q(0) ] 
[(A T ® I) + (I ® A T) I ® A T + x(A1)] r(0) =-"  --¢(I). 

Using this form for the boundary data (2.2) and using the homogeneous equation 
above, we set 

L =  [ (AT° ® I) + (I ® Jh - [OI ® AT + 

and arrive at 

L [  q(0) ] .  (2.8) 

We now have the initial values q(O), r(O) for (2.7) provided ILl # 0, and this 
determines any continuous Q(.) satisfying (2.1)-(2.4). Particularly, if the delay 
system (*) is asymptotically stable, then we have determined the original matrix 
function vg(.), defined at first via an integral. 

T h e o r e m  1. If there exists a continuous solution Q(.) to the system of func- 
tional differential equations (2.1)-(2.4), then let R(.), ~, ~o, X, P+, J, L be 
as defined above, and let q(a) = ~Q(a), r(a) = ~°R(a). The entries of the 

matrix [Q(0) R(0)] will satisfy the linear equation L ".l q(O)r(O) ] = -  [ ~(I) ".l" 

If ILl ~ O, then this equation uniquely determines [Q(0) R(0)] from q(O) = 
~Q(O), r(0) = ~°R(0), and uniquely determines [Q(a) R(a)] over [0, h] from 

" ~ 1 q (a ) /  = eJalq(O) ~ This in turn determines [Q(a)R(a)] over f-It, h] from 
r ( ~ )  ~ " L .J 

Q(-c~) = q ' r (a) .  Zf the delay system (*)  x'(t) = Aox( t )+  A ~ x ( t - h )  is asymptot- 
ically stable, then there does exist such continuous Q(.), it is determined uniquely 
if ILl ~ O, and we have Q(a) = ~(a) = f o  xT ( t )X (  t -- a)dt for - h  ~_ a ~_ h, 
where X(.) is the fundamental solution of (*). 

3 T h e  F u n c t i o n a l  E q u a t i o n  

In this section, now without the hypothesis of asymptotic stability for the delay 
- differential equation (*) x'(t) = Aox(t) + Alx(t  - h), we consider whether the 
system of functional differential equations (2.1) - (2.4) has a unique continuous 
solution. Before proceeding, it is worth noting that Castelan and Infante [2] 
developed an elegant solution to the functional equation Q~(a) = AToQ(a) + 
ATQT(h -- a) with the boundary data (2.2) replaced by a condition having 
considerably more symmetry. They set R(a) = QT(h - a), and then solve the 
ordinary differential equation (2.6) for Q(.), R(-) with initial data Q(h) = K, 
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R(h) = K T, where K is any member of IR n×n. These initial conditions are 
somewhat generous in that they are guaranteed to give the ordinary differential 
equation a unique solution over (-oc,  oo) for each K E ]Rn × n, even if the original 
delay system (*) has an imaginary axis eigenvalue. Thus much of the link with 
stability theory is lost. On the other hand, given the hypothesis of asymptotic 
stability for (*), both Infante and Castetan [9], and Marshall et al [15] have 
examined (2.1), (2.3)-(2.4) with the boundary data (2.2). In the absence of the 
stability hypothesis for (*), it has not been thought to examine (2.1)-(2.4), nor to 
make a connection with the eigenvalue behavior of (*). Presently we show, with 
the matrix L as defined in Section 2, that the system of functional differential 
equations (2.1)-(2.4) does have a unique continuous solution provided ILl ¢ 0, 
and we give a counterexample in a case having ILl = 0. Then, in Section 4, we 
make the link with the eigenvalue behavior of the delay system (*). 

Now to begin, we consider ]d(S) = f (s  + d), where ](s) = I s I -  Ao -e-ShA11 
is the characteristic function for (*), and d E JR. It is easily seen that fd(s) is 
the characteristic function for the delay system (*4) xt(t) = (Ao - dI)x(t) + 
(e-dnA1)x(t -- h), we can always define the matrices J4, Ld in Theorem 1 ac- 
cordingly, and equations such as (2.2)4 have the obvious meaning associated 
with (*d). We let adj(M) denote the adjugate of a square matrix M, we set 

c = - [ ~ I ) ] ,  and we will have particular interest in the vector function 

v ( d ) =  [ 4 4 ]  ° b t a i n e d ~ d  from v ( d ) =  ] ~ a d j ( L d ) . c ,  since of course d 

Ldv(d) = c if ]n4] ~ O. 
In the case that (*4) is asymptotically stable, we can also define the solutions 

Q4(a), R4(a). In fact, given Ao, A1 e IR n×n and h > 0, we define do = inf{d : 
f (s)  has no zeros with Re(s) >_ d}. Naturally, do is the stability exponent of 
the system (*), and since do = inf{d : f4(s) has no zeros with Re(s) > 0}, we 
see that the delay system ('4) is asymptotically stable for all d > do. For each 
d having both d > do, IL41 ~ O, Theorem 1 tells us that the functional system 
(2.1)d-(2.4)d has a unique continuous solution, and also gives an explicit formula 
for the solution. We let Q4(a) = Q(d,a), Rd(a) = R(d,a), and similarly for 
qd('), rd('), and we look carefully at this formula : 

[q(d,~)]=r(d,~) e~J~[ 44 ]t~4 f o r 0 < c ~ <  h, with v(d)= [an]ted 
1 

= ]~-~adj(Ld) • c. 

(3.1) 
Now for fixed d with d > do, ILdl ~ O, we know that q(d, h - a) = r(d, a) 

f°r O < a < h' and we write this as [P+e(h-~)Jd - P-e~J~] [ a4 ] = O" 

the Kronecker product form for the boundary value equation (2.2) given prior 
to (2.8), we set 

F ( d , a ) =  [ ( A ° - d I ) T ® I + I ® ( A ° - d I ) T  I®e-dhAT q-x(e-dhA1) ] 
p+e(h-a)Jd _ p_e~J~ 
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and we have 
F(d, ~)v(d) = c. 

Multiplying both sides by adj(F(d,  a)),  we have 

(3.2) 

IF(d, a)lv(d ) = adj(F(d,  a ) ) .  c, 

and multiplying by ILdi, we arrive at 

IF(d, a)ladj(Ld ) • c = ILdladj(F(d, a)) . c. (3.3) 

Now suppose there merely exists some d' E ]R with ILd, I # O. Then d -+ ILdl 
is analytic, and we conclude that there exists an interval (51,52) such that for 
each d E (51,52), we have d > do, ILdl # O. Thus (3.3) will hold for (d, a) E 
(51,52) x (0, h), an open subset of ]R 2. Since both sides of (3.3) have entries 
analytic in (d, a) throughout ]R 2, we know that (3.3) will be true for all real d, a.  
Noting the identity F(d, O) = Ld, we see that  for each fixed real d having tLdl # 0, 
there is a positive a0 such that for each a e [0,ao), one has tF(d ,a) l  # 0. For 
such a we can write (3.3) as (3.2), and since both sides of (3.2) are analytic in 
a,  we see that (3.2) holds for all real a. For our fixed d, again noting F(d, O) = 
Ld, we can define q(d,a), r(d,a) by (3.1), and this now certainly gives us a 
unique continuous solution for 0 < a < h to the ordinary differential equation 
(2.7)d with the boundary value equation (2.2)d and the functional requirement 
qd(h - a) = rd(a). From this in turn one can easily give the solution to the 
functional differential equation (2.1)d-(2.4)a for - h  < a < h. 

T h e o r e m 2 .  Let Ao, A1 E ~n×n, and let h > O. Consider the functional dif- 
ferential equation (2.1)d- (2.~)d, with continuity required. I f  there exists some 
d E ]R with ILdl y~ O, then for each d E IR with ILdl ~ O, this system has a 
unique solution over f -h ,  hi. This solution is given by (3.1) for 0 < a < h, and 
by Q(d, a) = QT(d , -a)  for - h  < a < O. 

C o r o l l a r y  3. Let Ao, A1 e IR n×n, and let h > O. Consider the functional differ- 
ential equation (Z.1)-(2.4). If ILl ~ O, then this system has a unique continuous 
solution for - h  < c~ < h. This solution is given as in the theorem above with 
d = 0 .  

With the amazing symmetries inherent in (2.7) and (2.8), and in F(. ,  a),  it 
is wise to give some words of caution. One important point is that  even for an 
asymptotically stable delay system, the solution Q(a) to the functional system 
(2.1)-(2.4) represents the integral t0(a) for - h  < a < h, not for all real a.  In 
fact, it is known [2] that  the spectrum for (2.1)-(2.4) has negative symmetry. If 
the delay system (*) is asymptotically stable, then from the comments opening 
Section 2, we know to(a) is the Fourier transform of the square integrable ma- 
trix function -~M*( iw)M(iw) ,  and so also has square integrable entries over 
(-cx), oo). Considering negative symmetry of the spectrum, this is not the case 
for the solution to (2.1)-(2.4). 
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Continuing with cautionary remarks, one might note the analyticity of the 
identities leading to the conclusion in Theorem 2, and then think that  the system 
(2.1)-(2.4) always has a solution, or at least does whenever the equation (2.8) 
has a solution. This is also not the case, as we presently show with the following 
counterexample. 

Example l. Consider the delay equation (*) x'(t) = ax(t) - a x ( t -  h), with 
h > 0, a E Kt - 0. Here we have Ao = a, A1 = - a ,  and for (2.2) we have 

- l = [ 2 a - 2 a ] [ q ° ] ' w h i l e J =  [ a -a-a] " T h i s g i v e s u s l s I - J l = s 2 ' a n d  

at 1 - a t  , s o t h a t L =  l + a h  - 1 -  ah ' 
Now ((I )  = 1, and for a solution to (2.1)-(2.4) to exist we must at least 

solution enu tion [ ] -- [ ;1 ]. solve, 
we obtain 0 = (1 + ah)(-1), i.e. 0 = 1 + ah. Thus there can be no solution to 
(2.1)-(2.4) in the case that  ah ~ -1 .  In the case ah = -1 ,  the solution to (2.8) is [ ] [1] [ 0 ]  
given a s p =  roq° = z  1 + .5/a ' z E I R ' s ° t h a t  r(t) ro 

[ z t t  ] . A r o u t i n e c h e c k s h o w s t h a t q ( h - t ) = z - h + t , r ( t ) = z  - h  t z _ ~ +  l ~ - ~ ,  
so that  q(h - t), r(t) are equal only at t = O, and there can be no solution to 
(2.1)-(2.4) even in the case ah = -1.  

Astute observers will note in the case ah = - 1  that  we solved the boundary 
value ordinary differential equation (2.7), (2.8) without solving the functional 
equation (2.1)-(2.4). In fact, if we consider the system (*d), setting Ao(d) = a - d  
and Al(d) = --e-hda as usual, then using (3.1) we will obtain a solution v(d) 
which is infinite at d = 0, so that  v(d) does not converge as d --r 0 to the solution 
p above for any finite value of the solution parameter z. It is noteworthy that  
the delay system (*) x'(t) = ax(t) - ax(t - h) has an imaginary axis eigenvalue, 
namely zero, and we are prepared now to look into this matter. 

4 T h e  E i g e n v a l u e  A b s c i s s a s  

In this section we explore the link between the solution of the functional differ- 
ential system (2.1)-(2.4) and the eigenvalue behavior of the delay equation (*) 
x'(t) = Aox(t) + Alx( t  - h). 

L e m m a 4 .  If  there exists £ E C having [Ld~[ ~ O, then the entries of the vector 

funetion v(d) [ ad ] = are meromorphic throughout •. 
t~d 

Proof. Noting the definition of v(d) opening Section 3, we see that  the entries 
of v(d) are ratios of entire functions, and are thus meromorphic. [] 
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It might seem appealing to define Ad = ~ ~-~¢o M$(iw)Md(iw)dw for complex 
d, where Md(s) is the Laplace transform of the fundamental solution of (*d), 
then note that Ad = Od(0) whenever the system (*d) is asymptotically stable, 
and attempt to analyze abscissas of system eigenvalues by analytic continuation. 
However, this complex matrix function d -+ Ad has a natural boundary at each 
vertical line which includes an eigenvalue of the system (*). Thus the adx-antages 
of analytic continuation can not be directly applied to show that the vector 
function v(d) has poles at the x-coordinates of the zeros of the characteristic 
function f(s).  Nonetheless, using a quadratic functional constructed with Q(.), 
it will be shown that v(d) does have poles at these locations, and on this basis we 
will have a means of accurately determining the abscissas of system eigenvalues. 

In fact, noting that fd(S) = f ( s  + d) is the characteristic function for the 
system (*d) above, we show this by merely showing that v(d) has a pole at 
d = 0 whenever f(iw) has a real zero w. Given any system of the form (*) 
having tL[ ~ 0, we now introduce the following quadratic functional V(¢) [8] 
defined for each ¢ E C[-h,  0]~ the space of continuous functions mapping the 
interval [-h,  0] into Ca: 

= + Q(u + h)Al ( )du) 
J-h-- 

+(/_u h ¢*(u)AT QT (u + h)du)¢(O) 

For solutions x(.) of (*), we define the member xt of C[-h,  0] as usual, i.e. 
by xt(u) = x(t + u) for - h  < u < 0. One can calculate the time derivative of the 
function V(xt), obtaining the following after a long, tedious, direct calculation 
which will use the equations (2.3)-(2.4): 

(Z (xt) = x * (t)( ATo Q(O) + Q(O)Ao + AT QT (h) + Q(h)A1)x(t). 

Noting the boundary value condition (2.2), we have 

?(xt)  = -x*(t)x(t),  i.e. I/(¢) = -¢*(0)¢(0) fo r  ¢ E C[-h,0].  

It is interesting to see why the boundary value functional equation for Q(-) 
could not have a solution if the system (*) has an imaginary axis eigenvalue. 
In this case one has w E IR, z E C n - {0}, and a complex vector function 
x(t) = ei~tz satisfying the delay - differential equation (*) over (-c~,c~).  By 
simply writing out the expression for V(xt) as defined above, one wilt find for 
x(t) = ei°~tz that V(xt) is not dependent on time, i.e. V(xt) = O. Since we also 
have ¢d(xt) = -x*(t)x(t)  = - z ' z ,  this is certainly a contradiction, and now we 
see that the 'boundary value system (2.1)-(2.4) does not have a solution. Thus 
ILl = 0 if the system (*) has an imaginary axis eigenvalue. This does not in itself 
mean that v(d) has a pole at d = 0. However, in the following theorem we show 
that this is the case if there exists real d with ILdl ~ O. 



Time-delay Systems 149 

T h e o r e m  5. If the system (~') x'(t) = Aox(t) + Alx(t  - h) has an imaginary 
axis eigenvalue and there exists real d ~ with JLd~l ~ O, then the vector function 
v(d) has a pole at d = O. 

Proof. From the immediately above comments, we know that jLdl = 0 at d =0, 
and since d --r ILdJ is analytic, there is a neighborhood 7~ of IR - {0} in which 
ILal has no zeros. Now since v(d) is meromorphic, we know that either v(d) has 
a pole at d = 0, or v(0) = limd~0 v(d) is finite. If we have continuity, then the 
following maps are continuous for (d, a) E (D U {0}) x [0, h]: 

1. d-+ v(d) 
2. (d, a) --+ e aJd 
3. (d,a) -~ eaJ~v(d) 
4. (d ,a)  --r (P+e (h-a)J~ -P_e~J~)v(d). 

Noting that the right side of 4 is equal to qd(h - a) - ra(a),  which is zero for 

d E 79,a E [0, h], we see from the above that setting [ ro(a)q°(a) ] = e~Zov(O) gives 

us a solution to the boundary value ordinary differential equation (2.7), (2.8) 
satisfying qo(h - a) = r0(a) for 0 _< a _< h. From this we would immediately 
have a continuous solution to the functional system (2.1)-(2.4). Since we know 
this is impossible, we conclude that  v(d) has a pole at d = 0. [] 

Noting that  f(s) = JsI-  Ao - e-SnAlJ will have a zero with abscissa Xo if and 
only if fxo (s) has an imaginary axis zero, we immediately arrive at the following 
theorem, the final theorem of the chapter. 

T h e o r e m 6 .  Consider the delay-differential equation (*) x'(t) -- Aox(t) + 
A l x ( t -  h). For each d E JR, define the system (*d) as in Section 3, with 
Ao(d) = Ao - d I ,  Al(d) = e-dhA1. Suppose there exists some d e ]R with 

,Ld, # 0 ,  and set v(d) = f a d ]  [ (0 I ] na = T£-~adj(Ld) ~ ) for all such d. Then 

the components of v(d) are meromorphic functions of d. If the system (*) has 
an eigenvalue with x-coordinate equal to Xo, then the vector function v(d) has a 
pole at d = Xo, and hence the matrix function d -~ [Qa(0)Rd(0)] also has a pole 
at d = Xo. 

5 Computat ion 

In this section we illustrate the value of Theorem 6 in accurately determining 
eigenvalue abscissas for the linear delay - differential system (*) x'(t) = Aox(t) + 
Alx( t  - h). We begin by noting that  for Yd(t) = e-dtx( t) ,  we have Y~(t) = 
(Ao--dI)Yd(t)+(e-dhA1)Yd(t--h), so that  the system (*d) is related exponentially 
to the original system (*). Recalling the stability exponent do introduced prior 
to formula (3.1), we know for each a > do that JX(t)J <_ Ce ta for t >__ 0, so that  
JYd(t)] < Ce t(a-a) for t > 0. Thus Yd(t) is exponentially decaying for each d > do, 
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and Qa(O) = f ~  yT(t)Ya(t)dt = f ~  xT(t)X(t)e-2dtdt, which of course means 
that  the matrix function d -+ Qd(O) is the Laplace transform of xT( t )X( t ) ,  
evaluated at s = 2d. Similarly, we will find that  d -~ Qd(h) is again a Laplace 
transform, i.e. RT(0) = Qg(h) = e dh . f o  xT ( t )X ( t  -- h) e-2dtdt for each d > do, 
and the entries of both these matrix functions are analytic for d > do. With 
these comments we can present the following simple but necessary lemmas. 

L e m m a 7 .  Consider (~} x'(t) = Aox(t)+ Alx ( t -h ) .  Suppose there exists d' E IR 
with ILa, I # O. Then the entries of the vector function v(d) are analytic on the 
interval (do, ~ ) .  

We know that  v(d) = [ qd(O) ] at  each d > do having ILdt ¢ O. Proof. Recalling [ r~(0) J 
Lemma 4, the entries of v(d) are meromorphic throughout 113, and now since 
qd(O), rd(0) are both analytic on (do, c¢), we know that  the only singularities of 
v(d) in (do, ~ )  are removable, m 

L e m m a 8 .  Fore  = tlA011 ÷ NA1H, there exist no complex zeros of f(8)  = IsI - 
Ao - A , e -Sh l  which lie in Re(s) > ft. 

Proof. Let ,~ E @ have f(A) = 0 and Re(A) > 0. Then A is an eigenvalue of 
the matrix Ao + Ale -~h, and since le-~hl < 1 for Re(,k) >. O, we have IAI _< 
IIAo +Ale-~hll < IIAoH + IIAIII. Thus IAI _< ~ if Re(A) > 0, f(A) = 0, and indeed 
there are no zeros of f(s) which lie in Re(s) >/~. rz 

We can now explain our approach to the accurate determination of the stabil- 
ity exponent and the eigenvalue abscissas for the delay system (*). From Lemma 
8, we know for d > IIA011 + IIAlll that  the system (*d) is asymptotically stable. 
From Theorem 6, we know that  v(d) ~ oc as d $ do. We thus begin by selecting 
some d + > IIAoll + []AIII, and we compute v(d) for values of d < d + until a pole 
is observed. From Lemma 7, the value at which this singularity occurs is do. 

To determine the eigenvalue abscissa immediately left of do, we let dl = 
inf{d : f(s) has no zeros with do > Re(s) _> d}, and compute v(d) for values of 
d < do until the next pole is observed. Here we still have Theorem 6, but not 
Lemma 7, and to be certain that  the value at which this singularity occurs is 
dl, we apply the principle of the argument to see if f(s) does indeed have a zero 
with Re(s) = dl. This process can be continued. 

Now provided only that  there exists some d' having IL~,I ~ 0, we know since 
d ~ ILd[ is a nonzero analytic function that  the zeros of ILd[ and hence also of 
amln(Ld) are isolated. Thus, considering points d where ILdl vanishes, we can 
expect removable singularities of v(d) to appear as such, and likewise poles. 
Given these limited comments on numerics, we can now present examples. The 
computations for these examples are conveniently performed using MATLAB. 

Example2. We consider the system (*) x'(t) = Aox(t) + Alx(t  - 1.3), where 

-1 .6  .8 , AI = Set A = Aa = A o -  eli = 
Ao = 2.4 2.7 1.5 -3 .2  " 
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- 3  - 2  -1 O 

Fig. 1. y = Iv(d)] 

- 1 . 6 - d  .8 1 B Bd e-l"3dA1, and examine the (*d). system 
2.4 2 . 7 - d  ' ,J 

One can easily show that  IIA01[ ___ 5.1, HAlll _< 7.3, and we compute v(d) for 
d < 12.5 = 5.1 + 7.3 + .1, finding from Figure 2 that  0 < do < 5. From Fig- 
ure 3, we see that  3.09 < do < 3.10. If we refined further, we would see that  
3.0982 < do < 3.0983. The growth exponent thus lies in (3.0982,3.0983). As is 
well-known [1], the growth exponent for this type of system is also the leading 
zero of the characteristic function. 

45O 

35O 

3OO 

100 

SO 

% 

Fig. 2. y = Iv(d)t 

For dl -- inf{d : :f(s) has no zeros with do > Re(s) > d}, we know that  
v(d) has a pole at d = d l .  Examining Figure 4, we find a pole in the interval 
(.25, .3). In Figure 5, we see that  this pole lies in the interval (.255, .26). If one 
desires more precision, one will find this pole in the interval (.2577, .2578). Using 
the principle of the argument, one can find that  the characteristic function f(s) 
has one complex zero to the right of .2578, and has three complex zeros to the 
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3,09 3.0f~ 3.094 3,096 3.0~ 3,1 3.102 

Fig. 3. y = iv(d)l 

right of .2577. Thus the system (*) has two eigenvalues with x-coordinate in 
(.2577, .2578), and we have .2577 < dl < .2578. 

4 0 ~ ,  

35 

25 

20 

15 

10 

% o.o~ o., o.,~ 0.2 o.~ oL~ o.~ 0:, 

Fig. 4. y = [v(d)l 

0,45 0.5 

Now to find d2 = inf{d : / ( s )  has no zeros with dl > Re(s)  >_ d}, we again 
look for a pole of v(d). From Figure 6, we find a pole in the interval (- .2,  - .15),  
and from Figure 7 this pole lies in (- .175,- .17) .  With even greater precision, 
the pole would be seen in (-.1741,-.1740). Again using the principle of the 
argument, we find that the system has three eigenvalues to the right of -.1740, 
and five eigenvalues to the right of -.1741. Thus -.1741 < d2 < -.1740. 

From the above analysis, the following picture has emerged. The system has 
a real eigenvalue in the interval (3.0982,3.0983). The system has a conjugate 
complex eigenvalue pair with x-coordinate in the interval (.2577, .2578), and 
also has a conjugate complex eigenvalue pair with abscissa lying in the interval 
(- .1741,-.1740).  This process can be continued to find as mmly eigenvalue 
abscissas as desired. 
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Example 3. The above computational method for determining the system stabil- 
ity exponent is useful in evaluating the benefits of time-delay feedback. In several 
recent papers [7, 10, 20], it has been shown that time delayed feedback of control 
systems represented by ordinary differential equations can improve the perfor- 
mance of feedback systems. The improvements come in the form of disturbance 
rejection, time delay stability margins, and response speed. If this is so, then it 
is nearly certain that time delay feedback can improve the stability exponent of 
a feedback system. To show that this is the case, we apply our computational 
method to an example of Kwon, Lee, and Kim [10]. 

We consider the controlled system xr(t) = Ax( t )  + Bu( t ) ,  with free dynamics 

g i v e n b y A =  [ 21 l i2 ]  w i t h c ° n t r ° l m a t r i x B =  [ 1 ] '  3 , and for simplicity, 

having free variables directly accessible for feedback. Choosing Q = 100I and r = 
1 in the standard linear quadratic regulator minimizing J = f o ( x T ( t ) Q x ( t )  + 
ru( t )2)dt ,  one will obtain optimal state feedback 1 u = - K l x ( t )  with /(1 = 
[27.27 3.07]. The closed loop system x ' ( t )  = ( A -  B K 1 ) x ( t )  has eigenvalues A1 = 
-31.69, A2 = -1.78, giving a stability exponent A = -1.78 with a corresponding 
time constant ~- = 1/1.78 = .56. In Kwon et al, the feedback u(t)  = - K l X ( t )  - 
K 2 x ( t  - h) - f~t_h K3(t - v)x (v )dv  is used, where K1 is the quadratic optimal 
feedback matrix, and/(2, /(3( .)  are chosen to satisfy performance requirements 
such as disturbance rejection, robustness against parameter variations, and delay 
stability margins. The matrices chosen are/(2 = [-2.6 - 6.5], K3(v)  -- [5 - 1] 
for all v. Frequency domain calculations show that this leads to the closed loop 

equations x ' ( t )  = Aox( t )  + A l x ( t  - h), with Ao = A - B ( K 1  + 1-~hh2K3),  
A1 = - B K 2 .  With time delay h = .04, we compute the stability exponent for 
this system, obtaining the graphs of [v(d)[ in Figures 8-9 below. 

-~ ~ ~ 4 

Fig. 8.  y - -  l v (d ) l  

1 The value given here for K1 was obtained using MATLAB, and differs slightly from 
that in Kwon et al. This does not change the order of the improvement. 
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We see here that the stability exponent is no greater than Ah = -2.80, 
giving a closed loop time constant no greater than T h  = 1/2.80 = .36. Thus this 
feedback strategy does indeed provide the system with an improved stability 
exponent and the associated faster response. 

Comment : Authors such as Freudenberg, Liang, and Looze [5, 13] have 
pointed out that time delays in a feedback system are accompanied by bandwidth 
difficulties, making the system more vulnerable to model uncertainty. Kwon et al 
address this carefully in their paper giving the above example. In other examples, 
particularly those involving time delay uncertainty compensation [7, 20], this has 
become a point of contention, with Liang and Looze [13] arguing that the use 
of time delays in the feedback loop leads to bandwidth which is too large for 
engineering practice. The time constant shrinks and response speed improves as 
bandwidth grows and vulnerability to uncertainty increases. The author's work 
gives a convenient computational means of determining the improvement in the 
time constant, thus providing a useful tool for assessing the tradeoff. 

6 Conclusion 

In this chapter we have given a computational method for determining the sta- 
bility exponent and the other eigenvalue abscissas in a linear delay - differential 
system. We have illustrated the theorems with examples, including one in the 
area of time-delay feedback. For future research, we have given one topic spe- 
cial mention. That is the challenge mentioned above, of obtaining computational 
procedures for determining stability exponents which can be implemented within 
system bandwidth constraints, i.e. in terms of constraints on lower and upper 
bounds of the singular values of system transfer function matrices. 

There are other possible directions for research, e.g. efforts at reducing the 
computational size occurring in constructing Q(.) for systems having multiple 
commensurate delays, carrying the work in this chapter over to neutral delay 
systems, the development of asymptotic expressions for the matrix function d -+ 
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Q~(0), which we know from Section 5 is a Laplace transform, and others. We 
discuss two interesting possibilities below. 

To begin, we note that  even given relentless advances in computing speed, 
there would still be value in a procedure for computing the stability exponent 
which did not depend on sweeping through d-values. If one could establish the 
convergence to the stability exponent of a Newton - Raphson method applied to 
some function of the matrix Qd, then the computation time for determining the 
stability exponent would be greatly reduced. 

Another point of special interest is the calculation of Q(.) for delay systems 
having multiple commensurate delays. Although the algebraic techniques nec- 
essary for the calculation are rather routine modifications of those occurring 
in the single delay case, the computational proportions are somewhat daunt- 
ing. However, when one writes differential equations for Q(.), R(.) = Q(. - h), 
S(.) = Q(. - 2h), . . . ,  one discovers enough structure to hope for new methods 
of reducing the computational size, with the possible effect of making it prac- 
tical to determine the stability exponent and eigenvalue abscissas. This could 
have relevance to the analysis of delay feedback systems connected in series or 
parallel, or even, optimistically, in the approximation of Q(.) for systems having 
incommensurate delays. 
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Abstract. In this chapter we consider the averaging of periodic delay 
differential and delay difference equations using the method of moving 
averages. Specifically, we prove formal averaging theorems for both types 
of systems. This work is based in part on fundamental work in the av- 
eraging of delay systems performed in the 1960's by Halanay[ll, 12], 
Hale[13], and Medvedev[23]. The analysis and theorems presented here 
differ from the earlier works in that our analysis gives greater importance 
to the delay terms which appear in the averaged system. To illustrate our 
results, we consider two simple examples of delay systems with periodic 
excitation - a cart and pendulum stabilization problem in the presence 
of periodic disturbances and feedback delays, and the adpative identifi- 
cation of chemical concentrations in a pipe mixing problem. 

1 Introduction 

The development of theory for the stability analysis of dynamical systems repre- 
sents one of the broadest sustained efforts in mathematics and applied science. 
At the moment, there exist well-developed tools for studying the stability of sys- 
tems of the form ~ = f(x) ,  where ] : ]R n -4 ]R n. What  has proven more difficult 
is the development of tools for the stability analysis of explicitly time-dependent 
systems, i.e. systems of the form ~ = ](x,t) ,  f :]R n x IR ~ lR n. Complications 
often arise when the vector field is periodic in t, i.e. f (x ,  t+T)  = ](x, t) for some 
T > 0. What  complicates the stability analysis is that  the system will exhibit 
unstable behavior which is purely a function of T. This phenomenon is, of course, 
known as parametric resonance. Simple physical examples of systems which ex- 
hibit parametric resonance include periodically forced spring-mass systems and 
periodically forced LRC circuits. There are a variety of methods suited to the 
analysis of such systems, most notably Floquet theory [22, 29] and the topic of 
the current work, the method of averaging. In particular, this chapter presents 
new results on the method of averaging for periodic delay differential and delay 
difference equations. 

1.1 A B r i e f  History of  Averag ing  

One method of eliminating explicit time dependence in some periodically ex- 
cited systems, which ultimately retains global information about the system, is 

158 
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the method of averaging. Motivating the development of a theory of averaging 
was the interest in predicting the motions of the planets in the 18th and 19th 
centuries (a brief discussion pertaining to this history is given in [2]), where 
averaging was seen as a way of coping with small periodic perturbations in mod- 
els of the solar system. Current theory is largely based on the work of Russian 
authors[7, 15, 16] from the first half of this century. These authors were princi- 
pally interested in studying weakly nonlinear second order systems of the form 

+ =  f(x, t). (1.1) 

where x E ]R, f is continuous in its arguments, f(x,J:, t + T) = f ( x ,~ ,  t) for 
T > 0, and 0 < e << 1. Through a series of coordinate changes, (1.1) can be 
written 

=  F(x, t) + 

which could be averaged to obtain 

± = eF(x), (1.2) 

where x e IR 2, F(z)  = -~ f [  F(x, t)dt, and we have ignored O(e 2) terms. Equi- 
librium and stability analysis could then be performed in terms of (1.2). Such 
systems arise physically as simple nonlinear mechanical and electrical oscillators. 
The classic example of such a system is the inverted pendulum forced by vertical 
oscillations of the hinge, for which it has been shown that the inverted equilib- 
rium can be rendered stable for sufficiently large forcing frequencies[3, 7, 21, 28]. 
Many other examples of  systems from this period can be found in [1]. 

Since then, the concepts used to average weakly nonlinear systems have been 
extended to the more general class of vector fields 

= ef(x,  t, e), (1.3) 

where it is assumed that f : ]f{ n x lR x lR + ~ JR, f ( t  + T) = f ( t )  for T > 0, f 
is bounded on bounded sets, f is at least twice differentiable in its arguments, 
and 0 < e << 1. As described in standard texts[10, 14, 34] there exists a change 
of coordinates x = y + ew(y, t, e) such that (1.3) can be written 

=  Y(y) + t, (1.4) 

where -](y) = -~ f [  f ( y , t ,  e)dt, and f ( y , t  + T,e) = f (y , t ,e) .  The effect of this 
coordinate change is to push the nonautonomous terms to O(e2). Thus, to O(e), 
(1.3) can approximated by 

= eY(Y)- (1.5) 

The closeness of solutions of (1.3) and (1.5) are given by averaging theorems 
proven in [10, 14, 34]: specifically if x(t) is a solution of (1.3) and y(t) of is 
a solution of (1.5), then Ix(t) - y(t)] = O(e) on the interval t e [0, tl], where 
tl = O(1/e). In addition, these same averaging "theorems associate hyperbolic 
behaviors of (1.3) and (1.5) (hyperbolic fixed points of (1.5) are associated 
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with hyperbolic periodic orbits of (1.3), asymptotic behavior of solutions on the 
stable/unstable manifolds of fixed points/periodic orbits in forward/backward 
time). The theory used for systems with periodic excitation has been extended 
in [14] for almost-periodic excitation. Arnol'd[2] gives an alternate description of 
the method of averaging from the point of view of action-angle coordinates, and 
discusses conditions under which averaging results for single and multifrequency 
systems break down. 

1.2 Appl icat ions  of  Averaging T h e o r y  in Controls  Engineer ing  

One field which has benefitted from fundamental advances in averaging theory 
is automatic control theory. The need for averaging theory arises in automatic 
control because physical processes often either possess some form of periodic 
excitation as part of their natural dynamics (external sources of oscillation) or 
may be controlled by periodic excitation. Once again, the inverted pendulum 
problem described previously has served as a paradigm for controls-oriented ap- 
plications of periodic excitation and the method of averaging. 

Averaging techniques have also proven useful in the synthesis of so-called 
open-loop periodic controls, sometimes referred to as vibrational controllers (see 
[6] for a tutorial). Open-loop control laws are those which do not take into account 
the state of the system being controlled. The control is merely some physical in- 
put (force, torque, voltage, etc.) chosen in such a way to excite some desired 
system behavior. Recent literature has focused on time-periodic functions as 
control inputs, making the method of averaging a desirable analytical tool. Mo- 
tivated by the stabilization of the inverted pendulum by high frequency vertical 
forcing, recent work[6] has focused on the use of open-loop periodic inputs in 
the control and stabilization of a variety of systems. One class of systems where 
periodic controls have been employed and have been observed to be robust is 
a class of superarticulated mechanical systems[26, 32, 33], of which the inverted 
pendulum is a somewhat trivial member. Concepts developed in the study of 
superarticulated mechanical systems are currently being extended to permit the 
systematic synthesis and analysis of open-loop control laws for more general 
systems[5, 6]. 

1.3 Motivation for the Averaging of  Delay Sys tems  

While the averaging of delay equations is interesting for its own sake, the im- 
portance of the research is immediately apparent in the context of control. One 
invariant in the synthesis of closed-loop control laws is that any conventional 
feedback loop will possess some delay or latency. In "analog" control systems, 
delays may arise as the result of unmodelled internal capacitances in the con- 
trolled system or the controller. The effect of these capacitances is that a phase 
lag may be induced in the feedback signal which will also be manifested in the 
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control. In "digital" control systems, delays are often the result of the compu- 
tational overhead in performing the control task and the finite clock cycle of 
digital components. While the increase in the allowable clock rates for digital 
control hardware is making clock precision less of an issue, there is current in- 
terest in the control of complex systems where the computational overhead is 
a significant source of control latency. Examples of such complicated systems 
where computation-induced delays might arise are infinite dimensional systems 
such as fluid/chemical systems and elastic structures. Another significant source 
of delays in control systems is transmission delays resulting from tele-operation. 
Examples of systems where transmission delays are significant include the Viking 
Mars lander and the robots which will be deployed as part of the upcoming Mars 
exploration. 

The need for developing extensive theoretical results for averaging of delay 
systems should also be apparent. Such theory is needed to design high-frequency 
open-loop control laws for the above mentioned applications. Interesting exam- 
ples of periodic forcing in delay systems can be found in [17, 18, 19]. As has been 
mentioned in [17], a limiting factor in the development of open-loop oscillatory 
controllers has been the lack of mathematical theory that can be used to describe 
the behavior of periodic delay systems. 

The current work in this chapter focuses on developing a comprehensive 
theory of computing averages for periodic delay differential and delay difference 
equations. In Section 2, we present theorems for the averaging of delay differential 
equations. This work has been motivated by the earlier work of Halanay[ll, 12], 
Hale[13], and Medvedev[23], and in fact extends these earlier results to yield av- 
eraged systems which more accurately approximate the original nonautonomous 
dynamics in the presence of significant delays. In Section 3, we modify the re- 
sults of Section 2 for delay discrete equations, and obtain completely analogous 
results. In Section 4, we apply the theory of Sections 2 and 3 to two examples 
from controls engineering. First, we study the closed-loop feedback control of 
an inverted pendulum in the presence of external oscillations. Next, we study 
the adaptive identification and control of a discrete pipe mixing problem. We 
summarize and conclude in Section 5. 

2 Averaging of Continuous-Time Delay Systems 

This section considers continuous-time delay differential equations given by 

= (t,  x ( t ) ,  x ( t  - r) )  ; x ( t )  = ¢ ( t ) ,  t e [to - r, to] (2 .1)  

where f is continuous with respect to all its argments, f : IR × D x D -~ ]R n, 
D C IR n, and e and r are positive real parameters. Furthermore, assume that f 
is T- periodic, i.e., f ( t  + T, Xl,X2) = f ( t ,  x l , x2)  for all (t, x l ,X2) E IR x D × D. 
The function ¢ is continuous on t E [to - r, to]. Let the solution of (2.1) be de- 
noted by x(t)  = x(t; to, ¢). 
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Numerous papers[11, 12, 13, 23] have studied (2.1) and shown when, for 
sufficiently small e, the solution to (2.1) can be approximated by the solution to 
the corresponding averaged ODE 

where 

y(t) = (y(t),  y(t ) ) ;  y(to) = ¢(t0) (2.2) 

]o (cl, c2) = ~ f (s, cl, c2) ds. (2.3) 

In (1.2), the explicit time dependence of f has been averaged out. As a result 
the complexity of analysis has been reduced. Additionally, all information on 
the delay has been ignored, greatly simplifying the problem even more. Unfor- 
tunately, though, it is precisely this oversimplification of ignoring the delay that 
causes inaccuracies in the approximation when e is not infinitesimely small [18]. 
In fact, the work of [18] indicates that there are two separate, important values 
of e. First, there exists some el, sufficiently small, such that, for 0 < e _< el, 
the time dependence can be averaged out in (1.1). Next, there exists an upper 
bound on e, denoted by e2, such that, for 0 < e <_ e2, the delay can be ignored. 
As [18] has noted, it is common that e2 << el. 

In general averaging results are stated for 'sufficiently small e.' Therefore, 
there is no need to distinguish between el and e2 in any of the proofs of averag- 
ing. However, in practice, a physical system may not admit an e infinitesimely 
small, and therefore, the classical averaging results of [11, 12, 13, 23] may not 
be applicable. It is then of interest to develop averaging theory which permits 
to have a larger upper bound. 

The approach taken in this chapter is to perform moving averages on the so- 
lution, x(t), of (2.1). That is, we simply take the forward moving average value 
of x(t) on the time interval [t, t + T], denoted by 5(t). Since x(t) is continuous 
and bounded on finite time intervals, its moving average will always remain rea- 
sonably close. In particular, when e is small, the rate of change on x(t) is small, 
suggesting that Ix(t) - ~ ( t ) l  will also be small. 

Because the higher harmonics of x(t) have been averaged out to obtain ~(t), it 
is then possible to approximate 5(t) by the solution of an autonomous differential 
equation - obtained by taking the (newly proposed) average value of the vector- 
field of the right-hand-side of (2.1). In this way, it is possible to relate x(t) with 
the solution to an averaged equation. Let us formally define the notion of a 
moving average. 

Defini t ion 1. Suppose that x(t) = x(t; to, q~) is the solution to (2.1) with con- 
tinous initial function ¢ E C. The moving average of x(t) is denoted by 5(t) 
and is defined as 

¢(t) ,  for t e [to -  ,to) 
"~(t) - 1 rt+T x(s)ds, for t > to, 

"TJt 
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where T > 0 is the period of f .  

T h e o r e m 2 .  Assume that the solution to (2.1) satisfies x(t) E D for t E [to - 
r, to + L1 + T] where L1 > 0 and T > O. Assume further that f is T-periodic 
and satisfies If(t, xx,xz)l <_ M for all (t, xx,x2) on ([to - r, to + L1] × D × D). 
Then I x ( t )  - 5 ( t ) l  = O(eT) for all t ~ [to - r ,  to  + L1 ] .  

Proof. For t E 
t E [to, L1], 

[to - r, to), we have by Definition 1 that x(t) - ~(t) = O. On 

Ix ( t )  - ~ ( t ) l  

_ 

1 t+T x(s)ds x(t) - [ ,It 
1 f t + T  x(s)]ds 

J ,  I x ( t )  - 

ft+T ~sst f (r, x(r), - r)) d -d8 
"T Jr 

[ t + T  s)ds 
"T Jt M( t  - 

where we have used the fact that f is uniformly bounded by M whenever x(t) E 
D .  D 

In this theorem, uniform convergence of the average value of f ( t ,  .) was never 
used. This implies that the above theorem is valid even when f is not periodic. 
Indeed, fewer restrictions are needed on vector-fields when taking moving av- 
erages, in comparison to when performing classical averaging (as in Theorem 3 
below). On the other hand, in order to take a moving average in (2.1), the solu- 
tion to time-varying delay differential equation (2.1) is needed. Hence, analysis 
will only be simplified if it is possible to approximate the moving average of a 
system by another trajectory that is easier to obtain. 

As in [18], introduce the alternate averaged model to (2.2) given by 

~.(t) = efo(z(t), z(t  - r)); z(t) = ¢(t), t E [to - r, to] (2.4) 

where f0 is defined in (2.3). It will be shown that (2.4) is a more natural repre- 
sentation of an averaged approximate model of (2.1). 

Remark 1. In (2.4), information on the delay has been retained, and hence, the 
proposed new averaged model is more complicated than (2.2). However, as this 
chapter demonstrates, it is often important to retain the delay in order for the av- 
eraged approximation to remain valid. The results of [9, 11, 12, 13, 23, 30] were 
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developed before the advent of advanced computer technology. In the 1960's, 
qualitatively analyzing the behavior of (2.4) was considered to be difficult. How- 
ever, advances in computers and numerical algorithms have made the simulation 
of delay systems relatively easy. (Although analytically, the problem of analyz- 
ing the behavior of nonlinear delay differential equations in the form of (2.4) 
remains an active area of research, the problem has become more tractable in 
recent times.) 

To this extent, in no way are we suggesting that the results of [9, 11, 12, 13, 23, 
30] are incorrect in claiming that (2.2) is an averaged approximation of (2.1). For 
e 'sufficiently small,' the approximation is valid. In fact, these earlier averaging 
results might have been criticized if they proposed (2.4) to be the simplified 
averaged approximation of (2.1), since it remains infinite dimensional. On the 
other hand, with the capabilities of modern computing hardware, the increased 
accuracy of (2.4) should more than warrant any additional added complexity. O 

We will now relate the solutions of (2.4) to ~'(t). Assuming right-hand deriva- 
tives, the function 5(t) satisfies the differential equation 

1 
= T [ x ( t  + T; to, ¢)  - x(t; to, ¢)] 

e f t + T  
= -- f (s, x(s; to, ¢), z ( s  - r; to, ¢)) ds 

T a t  
(2.5) 

on t ~ to, with ~(t) = ¢(t) for t E [to - r, to). 

The right hand side of the above differential equation depends on x( t )  and 
not on 5(t). Hence, 5(t) can be interpreted as the solution to the differential 
equation whose vector field is equal to the 'local average' of e f(.) along the solu- 
tion to (2.1). (The work of [24] examines local averaging techniques for 0DE's.) 

By rewriting (2.5) as 

{~ ft+T 
= f (s, ~ ( t ) ,~ ( t  - r))  ds x(t)  J, 

ft+T 
+'T  Jt If (s, x(s;  ¢), x(s  - r; ~)) - f (s, ~(t), Z(t - r))] ds (2.6) 

perturbation theory can be applied to relate ~(t) to the solution of (2.4). That is, 
due to Theorem 2 and Lipschitz arguments, the terms inside the square brackets 
in the second integral in (2.6) can be shown to be O(e). Hence, when f is periodic, 
the limit (2.3) exists uniformly in t, and the following result naturally follows. 

T h e o r e m  3. Let the assumptions o] Theorem 2 be true for  L1 = L / e  and assume 
that I f ( t ,  x l , x 2 )  - f(t ,  xl,x2)l _< g (Ixl - Xll + Ix2 - x21) for all (t, xi,Yci) e 
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([to - r, to + L/e] × D x D) .  Suppose, also, that both ~(t)  and z( t )  remain in D 
for  all t E [to - r, to + L/e],  with x( t )  = z(t)  = ¢(t)  on t E [to - r, to]. Then 

] 5 ( t )  - z ( t ) [  = 0 (eT) + 0 (er) 

for  all t E [to - r, to + L/e].  

Proof. Let  z( t )  = z( t ; to ,  ¢) denote  the solution to (2.4). B y  assumption,  on 
t E [to - r, to), I~(t) - z(t)l  = 0. We note  tha t  ~(t) usually has a discontinui ty a t  
t = to, and  therefore,  5 ( t  - r )  has a discontinui ty a t  t = to + r.  This  requires us 
to  be especially careful at  t = to and at  t = to + r.  Let  5 > 0 be an arbi t rar i ly  
small constant ,  and consider ]~(t) - z(t)] on t E [to, to + r  + 5], for which we can 
always wri te  

I ~ ( t )  - ~ ( t ) l  = I ~ ( t o )  - ~ ( t o )  

However,  we know tha t  on t E [to, to + r + 5] and z E D 

I f o ( z ( s ) , z ( s  - r ) ) l  _ ~ I $ ( r , z ( s ) , z ( s  - r ) ) l  dr  <_ ~ M d r  = M .  

Likewise, t.f(r, x ( r ) , x ( r  - r ) ) l  <_ M on this interval since it has been assumed 
t ha t  x E D. Therefore ,  for t E [t0,to + r + 5] 

- Jto T , s  M d T + M  ds. 

From the  assumpt ion  tha t  z(to) = x(to),  Theorem 1 guarantees  tha t  Iz(to) - 
• (to)l _< eMr/2. Therefore ,  for t E [to,to + r + 5], we have I~(t) - z(t)l __ 
e M  ( T /2  + 2r + 25). Next ,  assume L / e >__ r + 5. Then  for t E [to + r + 5, to + L / e], 
we wri te  

e( t )  - z( t )  = e(to + r + 5) - z(to + r + 5) 

s: [lr+" ] +e  f (7, x(v) ,  x ( r  - r)) d T -  1o (z(s) ,  z ( s  - r)) ds. 
+r+~ a s 

Using (2.6), this leads to  

I~(t) - z ( t ) l  < ]~(to + r + 5) - z ( to  + r + 5){ 

+e I$o (e (s ) ,  e ( s  - r)) - f o ( z ( s ) ,  z ( s  - r ) ) l  ds  
+r+5 

+e $(s  + r , x ( s  + r ) , x ( s  + r - r ) ) d r  - I o ( x ( s ) , x ( s  - r ) )  ds 
+r+~ 

+e Ifo(x(s) ,  x ( s  - r)) - f o (~ ( s ) ,~ ( s  - r)) Ids. (2.7) 
+r+~ 
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From above, we know that I~(to + r + 5) - z(to + r + 5)1 <. e M ( T / 2  + 2r + 
25). Furthermore, since f is Lipschitz with constant K and since it has been 
assumed that  x, 5 and z remain in D, this implies that  I fo (~ ( s ) ,~ ( s  - r ) )  - 
f o ( Z ( S ) , Z ( s - r ) )  I < K (l~(s ) - z(s) l  + I~(s - r) - z ( s  - r)l ) for t e [ to , to+L/e] .  
(For a proof of this statement, see the Appendix of [18]). 

Similarly, ]fo(X(S),X(S - r))  - f o ( ~ ( s ) , ~ ( s  - r))l <_ K (Ix(s) - ~(s)l  + 
Ix(s - r) - 5 ( s  - r)t ). By the proof of Theorem 1, this implies l f o ( x ( s ) , x ( s  - 
r))  - f o ( ~ ( s ) , ~ ( s  - r))l <_ e K M T  for all s E [to - r, to + L/e]. 

Likewise, for s E [to + r + 5, to + L/e], L / c  > r + 5, and r E [0, T], 

I f ( s  + r, x ( s  + 7"), x ( s  + 7 - r ) )d7  - fo (x ( s ) ,  x ( s  - r))  

lrZ 1 = ~ [S(s + T, x(s  + r), x(s  + r - r)) - I ( s  + r, x(s) ,  x(s  -,-)]e~" 

_< ~ g ( lx ( s  + ~-) - x ( s ) l  + t~(s  + ~- - r) - x ( s  - r ) l )  dr.  

e i t ,  f()~, x(A),  x (A - r))dA. For to _< tl _< t2, it is known that  x(t2) - x ( t l )  = Jt~ 
This implies for to _< tl _< t2 

/: I x ( t 2 ) - x ( t l ) l  < e t I ( s , x ( s ) , x ( s - r ) ) l d s < _ e M ( t 2 - t l ) .  

Therefore, for s E [to + r + 5 , t o + L / e ] ,  r E [0, T], and any constant d e [0,r +5], 
we have ~x(s + r -- d) - x ( s  - d)l <_ eMr .  

Using the above inequalities, for t E [to + r + 5, to + L/e] and L / e  >_ r + 5, 
(2.7) becomes 

,~(t) - z(t)I  <_ e M  ( T + 2r + 25)  

+ e g  f t  (l~(s) - z(s) l  + JS(s - r) - z ( s  - r)]) ds 
Jto+r~-6 

/0 Z2 + T K M r d T d s  + 0 K M T d s .  
+r+6 +r+~ 

Since each of the integrands is positive, for any t E [to, to + L/c] we can write 

,~(t) - z( t) ,  <_ e M  ( T +  2r + 25)  

+ e g  ( te ( s )  - z ( s ) l  + l e ( s  - r)  - z ( s  - r)l)  as 

"2I £ + ~ K M r d r d s  + e 2 K M T d s .  
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(The discontinuity of 5 at t = to-  is Lebesgue integrable.) Notice that  the above 
inequality is increasing and that  ~(s - r) = z(s - r) for s E [to, to - r]. Therefore 
for t E [to, to + L/e] 

sup I s ( s ) -  z(s)l <_ eM ( T +  2r + 25) + 2eKMTL 
~e[to,t] 

+2eK sup l e ( ~ )  - z(o)lds. 
aE[to,s] 

Since suPse[to,t I t~(s) - z(s)l is a continuous function, we can apply Gronwall's 
inequality for t E [to,to + L/e] to obtain 

sup ,~(s) - z(s)l < [eM ( T  + 2r + 2~) + 2cKMTL] e 2~K(t-t°). 
se[to,t] 

The constant ~ is arbitrarily small (e.g. select ~ = er), and therefore, the above 
inequality implies t h a t  I~( t )  - z ( t ) l  - -  O(eT) + O ( e r )  o n  t ~ [to, to + L/e]. m 

Combining the Theorems 2 and 3 leads to the following averaging theorem. 

T h e o r e m 4 .  Let the assumptions of Theorems 2 and 3 be true. Then Ix(t) - 
z(t)l = 0 (cT) + 0 (er) for all t E [to - r, to + L/e]. 

Proof. Write Ix(t) - z(t)l _ Ix(t) - ~(t)l + I~(t) - z(t)l. The result now follows 
from Theorems 1 and 2. m 

Remark2. The fact that  we considered only one delay is for pure convenience. 
The results can easily be extended to systems with multiple constant delays. 
Generalization of the results to non-periodic functional differential equations 
with time-varying delays is more complicated and is the subject of a present 
research effort by the authors. 

3 M o v i n g  A v e r a g e s  o f  D i s c r e t e - T i m e  S y s t e m s  w i t h  
D e l a y s  

In this section, we demonstrate how the techniques of taking moving averages can 
be used to develop averaging theory for discrete-time delay difference equations. 
Let discrete-time be denoted by n, and consider the periodic time-varying delay 
difference equation given by 

x ( n + l )  = x(n)+ef  (n,x(n),x(n - p));  x(n) = ¢(n), n E [no-p, no] (3.1) 

where x E ]R m, p > 0 is the integer delay, e is a non-negative constant and 
] is sufficiently continuous so that a solution to (3.1) exists. For simplicity, let 
J[a, b] denote the set of all integers between a and b. Then, using this notation, 
n E J[a, b] denotes the set of integers satisfying a < n < b. In this chapter, it 
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will always be assumed that f is N-periodic, i.e., there exists an integer N > 0 
such that f ( n ,  cl ,c2)  = f ( n  + N ,  cl ,c2) for any integer N and any ci E ]R m. 

Once again, our goal will be to relate the solutions of (3.1) to the solutions of 
a corresponding averaged autonomous delay difference equation. In particular, 
let the averaged equation be described by 

z ( n + l )  = z ( n ) + e f o  ( z ( n ) , z ( n  - p ) ) ;  z (n)  = ¢(n), n E J [ n o - p ,  no] (3.2) 

1 j m N - 1  . where z e IR m and )to (z(n), z (n  - p) ) =_ ~ ~-]j=o f (3 + n, z (n) ,  z (n  - p) ). 
The fact that we consider only one delay is purely arbitrary and for ease of pre- 
sentation. That is, we could also consider x (n  + 1) = x(n)  + e f  (n, x (n) ,  x (n  - 
p l ) ,  .... x ( n  - p j ) )  and then relate solutions to z (n  + 1) = z (n)  + efo (z (n) ,  
z(n - p l ) , . . . ,  z(n - 

In comparison with the results in the previous section for averaging of 
continuous-time delay differential equations, the results of this section are sim- 
pler. The discrete equations of motion given in (3.1) are finite dimensional. In 
fact, any delay difference equation can be rewritten as a higher order difference 
equation without delay. For example, in (3.1) let x°(n)  = x(n) ,  x 1 (n) = x ( n - 1 ) ,  
... , xP(n)  = x (n  - p). Then (3.1) becomes 

x ° ( n  + 1) = z ° (n )  + c f  (n, x°(n), x 1 (n), ..., xP(n)) 

x i ( n  + 1) --- x i ( n )  + g (x i-1 (77,), x ' (n ) )  ; i = 1, 2, ..., p 

where g (x ~-1 (n),  x i (n)  ) = x ~-1 (n) - x i (n) .  

Now it is possible to attempt to use mixed time scale averaging results for 
difference equations with no delays to prove averaging theorems, such as those 
found in Chapter 8 of [27]. As a result, averaging of periodic delay difference 
equations might be derived from known averaging techniques of periodic differ- 
ence equations with no delays. Additionally, for periodic difference equations, it 
is possible to perform 'lifting' and eliminate the time dependence altogether (see 

IS]). 

The approach of this section is somewhat different than the above outlined 
approaches and is consistent with the approach used in the previous section for 
delay differential equations in continuous-time. No attempt will be made to in- 
crease the size of the vector space in order to eliminate the delay. Instead, we take 
the moving average of the solution of (3.1) and show that this moving average 
is 'close' to the solution of (3.1) when e is sufficiently small. Next, the moving 
average is related to the solution of (3.2). Many of the necessary procedures to 
prove discrete time averaging results are, therefore, similar to those previously 
presented for continuous-time systems. 

Defini t ionS.  Suppose that x(n)  = x ( n ; n o , ¢ )  is the solution to (3.1) with 
initial function ¢. The moving  average of x(n)  is denoted by ~(n) and is 
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defined as 

¢(n), for n e J[no - p, n0] 
7 ( . )  = -k 

~k=o x(n  + k), for n > no, 

where no is an integer starting time and N > 0 is the period of f .  

As before, this leads to the following theorem. 

T h e o r e m 6 .  Assume that f in (3.1) is a continuous N-periodic ]unction sat- 
is]ying i f ( n ,  cl,c2)] < M for all (n, cl,c2) • ( J [ n o - p ,  n o + g +  L1] x D x 
D),  where L1 is a positive integer and D C ]R m. Assume further that x • D 
for all n • J[no - p, no + g + L1]. Then Ix(n) - ~(n)l = O ( e ( N  - 1)) ]or all 
n • J[no - p, no + L1]. 

Pro@ For n • J[no - p, no], we have that x(n) - 5(n)  = O. By definition, for 
n > n o + l  I N - 1  

1 
Ix (n ) -5 (n ) [  = x ( n ) - - ~ x ( n + k )  

k = 0  

1 g - ~  
= Ix(n) - x ( n  + k) l .  

k = l  

However, we know, for k > 1 and n > no, that x ( n ) -  x (n  + 
~--~kWn e k) = -e, . . , i= n f ( i , x ( i ) , x ( i - p ) ) .  Therefore, I x (n ) -  ~(n)[ _< ~ ~k/v__~ 1 ,-,i=n~-'k+n 

t f ( i , X ( i ) , x ( i - - p ) )  I. Since it has been assumed that x • D, this leads to 
~ N - 1  v,k+n M = ~ g--1 eM(N-I) 

Ix(n) -- 5(n)[ < ~ k=l ,--,i=n -~ ~ k = l  M k  = 2 [] 

The next step will be to show that [5(n) - z(n)[ remain close to each other for 
sufficiently small e. First we note that for n > no + 1 

N - I  
1 

e(n  + 1) - g(n) = ~ ~ [x(n + k + 1) - x(n  + k)] = [x(n + N) - x(n)]. 
k----0 

N - 1  Since x(n  + N)  = x(n)  + e ~ j = o  f ( J  + n , x ( j  + u ) , x ( j  + n - P ) ) ,  the above 
equation becomes 

N - 1  

• (n + 1) = "2(n) + e E f (J + n, x ( j  + n), x ( j  + n - p) ) .  (3.3) 
j=O 

Qualitatively, the idea of averaging delay difference equations becomes more 
clear by analyzing (3.3). From the previous theorem, it is known that ~(n) 
x(n)  for sufficiently small e. Therefore, this implies in (3.3) that ~(n + 1) 

N - 1  
~(n) + e ~ j = o  f (j + n , ~ ( j  + n ) , ~ ( j  + n - p) ). Additionally, when e is suffi- 
ciently small, ~(n + j)  changes little over j • J [0 ,N - 1] and therefore, 
5(n + j )  ~ ~(n). This leads to the approximation of (3.3) by the delay dif- 
ference equation ~(n + 1) ~ ~(n) + ~ ~jN__ol f (j + n, ~(n), ~(n -- p)), which is 
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precisely the same equation as (3.2). In summary, these arguments show that for 
sufficiently small ~, the averaged equation (3.2) is a small perturbation of (3.3). 
Therefore, it is now possible for us to relate solutions of (3.1) to (3.2). 

To help formalize these ideas, note that by (3.2) and (3.3) 

n--1 

~(n) = ~(no) + ~ ~ fo (~(~1, z(s - pl) 
8~nO 

n--I N - I  
6 

• (~) = ~(no) + ~ ~ ~ f (j + s, x(j  + s), ~(j + ~ - p)) 
s-.~no j = 0  

for all n _> no. 

T h e o r e m  7. Let the assumptions of Theorem 6 be true for L1 = L/c  and assume 
that If(n, c l , c 2 ) - f ( n , ~ l , ~ 2 ) l  < g ( f c l -~11+]c2-C2t )  for all (n, cl,c2) E 
(J[n0 - p, no + L/e] × D × D). Suppose, also, that both 5(n) and z(n) remain 
in D for all n e J[no - p ,  no + L/c], with S(n) = x(n) = z(n) = ¢(n) on 
n e J[no - p, no]. Then 15(n) - z(n)l = (9 (c(Y - 1)) + (9 (ep). 

Pro@ For n e J[no-p,  no], it has been assumed that ~(n) = z(n). For n >_ n o + l  

• (n) - z(n) = ~(no) - z(n0) 
n--1 1 g -1  

+~ ~ ~ Z If (J + s, x(j + ~), z(j  + ~ - p)) 
8=no j----O 

- fo (z(s), z(s - p))]. (3.4) 

As in the continuous time case, we will break the proof into two separate time 
intervals. First, consider n ~ J[no + 1, no +p  + 1]. Since 5(no) = z(no), we have 

n--I  1 N--1 

I~(n) - z(n)[ _< c ~ ~ ~ Ill (J + s , x ( j  + s ) , x ( j  + s - P))I 
s = n o  j=0  

+ Ifo (z(s) ,z (s  - P))l] 
no~{-p ~ N - - I  

<- -~ Z ~ ~ 2M = 2~Mp, 
s -~no j = 0  

where we used the fact that f0 will be bounded by M when f is bounded by M 
(as we showed in the beginning of the proof of Theorem 3 in continuous-time). 

Now consider the interval n E J[no +p+ 2, no + L/e], L ie  > p +  2. We rewrite 
(3.4) on this interval to become 

~(n) - z(n) = "~(no + p + 1) - z(no + I) + 1) 
n.-i N--I 

£ +-~ ~ ~[f(j+s,x(j+8),x(j+s-pll-lo(z(sl,z(~-p))] 
s----no'~p+l j :O 
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which implies that on n E J[no + p + 2, no + L/e] 

t~(n) - z(n)t  < ]'2(no + p +  1) - z(no + p +  1)1 

1 +4 ~ [ / ( j  + s , ' 2 ( s ) , e ( s  - p ) )  - Io ( z ( s ) , z ( s  - p ) ) ]  
s=no-t-p-l-I "---- 

1 + ~ _ . , [ y ( j + s , z ( s ) , z ( s - p ) ) - l ( j + s , e ( s ) , ' 2 ( s - p ) ) ]  
j=0  

+ ~_, [f ( j  + s, x ( j  + s), x ( j  + s - I))) 
j=0  

--f ( j  + S, X(8), X(S -- P))IN • (3.5) 

From above, we know that le(n0 + p + 1) - z ( n o  + p + 1)1 ___ 2eMp. Analyzing 
the first inner summation yields 

~_, [ I  (J + s , '2(s) , '2(8  - p) )  - Io ( z ( s ) ,  z(s  - p))l 
j=O 

= rio ('2(s), .2(s - p))  - 1'o ( z ( s ) ,  z ( s  - p))l 

__ g ( le(s)  - z(s)l  + l'C~s - p)  - z ( s  - P)I) 

where we have used the fact, without proof, that fo is Lipschitz with constant 
K when f is Lipschitz with constant K (see Appendix of [18] for the continuous 
time proof). By the proof of Theorem 6 and the assumption that x and • remain 
in D, the second inner summation in (3.5) yields 

N--1 -- P))] 
g ~ [ S  (J + s, x(s), x(s - p ) ) -  f (J + s,.2(s),.2(~ 

j=O 

K g - 1  
< ~ ~ (Ix(s) - ~(s) l  + Ix(s - p) - ~ ( s  - p)l) 

j=O 

K N-I 
<-- -~ E eM(N - I) -- eKM(N - I). 

j=O 

Finally, the last inner summation in (3.5) 

I I [I (J + s, x ( j  + s),  z ( j  + s - p)) - l (J + s, x(s), x(s - p))] 
j=O 

K N - I  
< ~ ~ (lx(j + s) - z(s)l + Iz(j  + s - p) - x ( s  - P)[) 

j=O 
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K N - 1  
+ - ~  ~ (Ix(j + s) - x(s)l + lx(j + s - p) - x(s - P)t) 

j = l  

K N-I  j+s 
+-Nj~=I e i ~ = s f ( i ' x ( i ) ' x ( i - P ) )  

N--1 
eK 

<- -N- Z 2M2 = 2 e K M ( N  - 1) 
j----1 

t j-bs--1 

i=s--1 
f (i, x(i), x(i  - p)) 

for s E J[no + p +  2,n0 + L/e], L/e  > p +  2. Combining the above bounds for 
n E J[no + p + 2, no + L/e] and L/e  > p + 2, (3.5) becomes 

n - - 1  

I F ( n ) - z ( n ) l  < 2 e M p + e  Z [ 3 e K M ( g - t ) + K ( I F ( s ) - z ( s ) l  
s=no-~pq-1 

+ t (s - p )  - z ( s  - p ) l ) ]  • ( 3 . 6 )  

Since the right hand side of (3.6) increases with n and since F(n) = z(n) on 
n E J[no - p, no], we can rewrite (3.6) as 

n - -1  

IF(n) - z(n)[ <_ 3e2KM(N - 1)(n - no) + e Z 2K iF(s) - z(s)t 

which is valid for all n E J[n0, no + L/e]. This implies that for all n E J[no, no + 
L / e l  

n- -1  

IF(n) - z(n)l < 2eMp + 3 e K M ( N  - 1)L + e Z 2K IF(s) - z(s)l .  
$~nO 

By Gronwall's inequality for discrete systems (see Appendix C2 of [27]), this 
implies 

I F ( n )  - z ( n ) l  < 
< 

< 

for all n e J[no, no + L/e]. 

[2eMp + 3 e K M ( N  - 1)L] (1 + 2eK) n - l -n°  

[2eMp + 3eK M ( N - 1)L] e 2*K(n-n°) 

[2eMp + 3 e K M ( N  - 1)L] e 2 K L  

D 

Combining the previous Theorems leads to the following averaging theorem for 
delay difference equations. 

T h e o r e m 8 .  Let the assumptions of Theorems 6 and 7 be true. Then Ix(n) - 
z(n)[ = O ( c ( Y -  1 ) )+  O (ep) for all n 6 J[no - p ,  no + L/e]. 

Proof. Write Ix(n) - z(n)[ _< Ix(n) - 5(n)[ + IF(n) - z(n)[. By Theorems 6 and 
7, this implies that  Ix(n) - z(n)[ = O (e(Y - 1)) + O (ep). o 
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4 Applications of Averaging to Delay Systems in Controls 
Engineering 

4.1 Car t  and P e n d u l u m  Cont ro l  in the  P resence  of  Ex te rna l  
V ib ra t i ons  and  Feedback  Delays  

We now present a simple application to a variation of cart and pendulum stabi- 
lization by proportional feedback. As illustrated in Figure 1, the system consists 
of a cart and planar pendulum apparatus in a reference frame which is being 

m 

Fig. 1. Cart and Pendulum subjected to periodic disturbances. 

subjected to a periodic disturbance of amplitude/~ and frequency ~ along the 
horizontal axis. This disturbance might be due to an unsteady platform or some 
external periodic noise signal. 

The net motion of the cart is equal to the sum of the disturbance and the 
cart's motion in the local frame of reference. The pendulum is modelled as a 
rigid, massless link of length ~ and a bob of mass m, and its displacement is 
referenced to the inverted equilibrium. Suppose that the cart position may be 
precisely controlled. As discussed in [20], this assumption is fairly common. Then 
the differential equation of motion for the pendulum is 

rng2~ + cd~ - m~ (fi cos 0 + g sin 0) = 0, (4.1) 

where/~ = _~2/~ cos w t  + 5, ~ is the acceleration of the cart, and Cd is the damp- 
ing coefficient for the hinge. 

To stabilize the inverted equilibrium, we prescribe the proportional control 
= - K p g ( t  - r), where r > 0 is a control delay perhaps due to sampling, 
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computation, or even tele-remote operation. Then/i( t)  = -w~/~ cos ~ t -  K p S ( t -  
r). (4.1) can be written as a dimensionless delay differential equation 

8" + c~ c8 ' - c cos T + 0 ( kS(  r - r ' )  cos 8 - sin 8) = 0, 

where T = w t ,  (.)~ = d / d T ,  ~ = t3/~ = ~¢gfl~/e/w, c --- ~ed/9,  k = ~ K p / g ,  and 
r '  = wr .  Prescribing the coordinate change 8 = yl - e cos~-cos Yl, 8' = ey2 + 
e sin r cos Yl and proceeding as in [7], we eventually have the system of first order 
equations 

y~ = ey2 + O(c 2) 

y~ = e [-cy2 + sinyl cosyl cos 2 T + Y2 sinyl sinT 

- k y l  ( v  - r ') cos Yl + sin Yl] + O(e2) - (4.2) 

By Theorem 2, the average of (4.2) is given as 

Z~ ~ 5Z2 

[ sin zl cos zl k Z l ( 7 . _ r , ) c o s z  1 + sinzl]  . (4.3) z~ = ¢ - - c z 2 +  2 

Linear analysis of the inverted equilibrium for the case r'  = 0 shows that  the 
system is stabilized if the proportional gain k > 3/2. 

The results of simulations of the periodic and averaged systems are shown in 
Figures 2, 3, and 4. The parameter values used in the simulations are e := 0.1, 
k = 3, and delay values r j = 0 and r I = 0.5. In the original time scale, these 
delay values scale back to r = r~/w = er' V ~ '  Initial condition and function 
data  is given by (yl(r) ,y~(r))  = (zl('r),z2(T)) = (0.5,0) for ~" 6 [ - r ' ,0 ] .  

In Figures 2 and 3, we see phase portraits for the averaged and periodic sys- 
tems both without (Fig. 2) and with (Fig. 3) delays. In both figures, the averaged 
phase portrait approximates the periodic system's trajectory. The significance 
of this result is that  it shows that the appropriate averaged equations retain the 
delay term, as opposed to earlier results which suggest that  the delay term is not 
important. In Figure 4, we see a comparison of the averaged trajectories for the 
system without and with delays. It is clear from the figure that  these trajectories 
are distinct, and that trajectory with delay is not a small perturbation of the 
trajectory without delay. This is true in spite of the fact that the delay is O(e) 
in the original time scale. 

4.2 A d a p t i v e  Iden t i f i ca t ion  of  P i p e  Mix ing  

To demonstrate the applicability of the discrete time averaging results presented 
in this chapter, we will now discuss an application of adaptive identification in 
process control. We first note that the identification algorithm that we propose 
is, perhaps, slower and less robust than other known techniques. However, the 
algorithm is based on classical Least Mean Squares adaptive identification and 
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Fig. 2. Periodic system (solid) and averaged system (dashed) trajectories for the con- 
trolled cart and pendulum with no feedback delay. 
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Fig. 3. Periodic system (solid) and averaged system (dashed) trajectories or the con- 
trolled cart and pendulum with feedback delay. 
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Fig. 4. Averaged trajectories with and without feedback delay. Note from this figure 
and Figures 2 and 3 that the method of averaging presented in this chapter accurately 
approximates the periodic system's dynamics in the presence of a significant feedback 
delay. 

seems to be a fairly reasonable approach to the problem being considered. 

Consider the process control pipe mixing problem as illustrated in Figure 5. 

c l q  I CRqR 

v~~///, ...[} /~//" v 2 ~: v R-~ 

c2q2 C R - l q  R - !  

Fig. 5. Diagram of pipe mixing problem. 

y(n) 

A large pipe is being fed liquid chemical by R number of smaller pipes. At the 
exit of each of the feeding smaller pipes there is a valve to regulate the flow. 
Denote valve i by V~ and the corresponding flow rate of liquid through it at time 
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n, measured in meters3/second, by qi(n). The values of qi(n) are measureable 
using the flow sensors in each valve and are also regulatable by Vi. Each fresh 
feed input pipe carries the identical type of chemical, but with different concen- 
tration ci, measured in moles~meters 3, into the main feed pipe. The product 
ciqi(n) represents the number of moles flowing out of Vi each second. 

Our goal is to develop a recursive identification algorithm that can identify 
the concentrations, ci, by measuring the concentration of the traveling liquid 
somewhere after VR. Since the feed pipes are each separated by finite distances, 
there will be transportation lags in the system. Suppose that we are able to 
measure the transportation lag from Vi to the location where we are reading 
the chemical concentration, and denote the lag time by Pi. Furthermore, assume 
that each Pi is a constant value (this is, perhaps, an unrealistic assumption). 

The output y(n) represents the number of moles per second at the mea- 
surement location, i.e., y(n) = ~ = 1  ciqi(n - Pi). In order to estimate the con- 
centrations c~, consider an adaptive estimate of the output, given by s(n) -- 
~ = 1  )~i(n -p i )q i (n  - P i ) .  Here, hi(n) represent the concentration estimate at 
IT/ and should be designed to converge to ci. The error in our estimated output 
is given by e(n) = y(n) - s(n), or, more precisely, 

R 

e(n) = E [ci - ~i(n - Pi)] qi(n - Pi). 
i = 1  

If we let el(n) denote the estimated error Vi, then we can symbolically model 
each ei(n) as in Figure 6, implying that e(n) = ~ = I  ei(n). 

qi(k)  . 

[ I ¸ ...... 

e~(k) 
) ,  

Fig. 6. Block diagram describing the adaptive identification algorithm for the pipe 
mixing problem. 

Define the functions Oi(n) = ci -h i (n ) ,  from which we may define the vector 
O(n) = {01 (n), 02(n), . . . ,  0R(n)). Then each estimated valve error can be written 
as e~(n) = Oi(n -pi)q~(n -P i ) .  Now, suppose that we update O(n) according to 
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the least means squares algorithm (see [27] for an overview) 

R 
0 e 2 ( n )  , 

O(n + 1) = O(n) - ~ "= OOT~,--pi) 

which leads to 

Oi(n + 1) = Oi(n) - ee(n)qi(n - Pl) 
R 

= O i ( n ) - ~ E q i ( n - p i ) q j ( n - p j ) O j ( n - p j ) ,  (4.4) 
j = l  

where i = 1, 2 , . . . ,  R. Successive estimates of )~i are obtained from the definition 
of Oi(n) and (4.4): we have 

~i(n + 1) = hi(n) + ee(n)qi(n - Pi) 
R 

= A i ( n ) + e E q i ( n - p i ) q j ( n - p j ) O j ( n - p j  ). (4.5) 
j = l  

Since we are able to regulate each qi(n) by adjusting V/, let us implement N- 
periodic flow rates in each of the valves, implying that  qi (n + N)  = qi (n). Then 
(4.4) is exactly in the form that  averaging can take place. The corresponding 
average of (4.4) is given by 

R 

zi(n + 1) = zi(n) - e E qi(n - pi)qj(n - p j )z i (k  - Pi) (4.6) 
j = l  

for i = 1, 2 , . . . ,  R, and where qi(n - pi)qj(n - Pi) represents the (constant) mov- 
ing average of qi ( n -  Pi)qj ( n -  pj), as previously defined. (It is constant because 
qi(n - p i ) q j ( n - p j )  will also be periodic.) Assume that  8i(n) = zi(n) on n < no. 

Hence, for any n E d[no,no +L/e]  and any ~/> 0, there exists an e0 > 0 such 
that  for 0 < e < eo 

10i(n) - z (n)l 5_ 7. 

The goal now is to select e (sufficiently small) and qi(n) such that  zi(n) tends to 
sufficiently close to Zero for all n = ~ < L/e .  Then this implies that  Oi(h) ~ O, 
i.e, )~i(h) ~ ci. As a result, we would have adaptively identified concentrations 
ci, i = 1, 2, ..R. We remark that  since we can arbitrarily choose qi, to simplify 
the algorithm we choose qi such that  qi(n)qj(n) = 0 for i ¢ j .  For example, 
c h o o s i n g  qi(n) = sin -~ will satisfy this criteria. In this case, (4.6) becomes 

z~(n + !) = zi(n) - eq2i (n - -p l ) z i (n  - P i ) ,  

which has a stable trivial solution independent of the delay Pi. 
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For the purpose of illustration, let R = 1 and suppose that ql (n) = Q + 
ozsin~-, where 0 < a < Q are constants. In this case, (4.6) becomes 

and successive estimates of A1 are likewise obtained from (4.5) as 

A-~z(n + l) = A-~(n) + c [O2 + a---~] z l (n-p l ) ,  

where the overline indicates that we have obtained the estimate from the average 
Zl.  

The algorithms using 01 and Zl have been simulated, with the results given 
in Figures 7 and 8. In these simulations, we have chosen cl = 1 and AI(0) = 0, 
implying that 01 (n) = zl (n) = 1 for n E J[-Pl, 0]. The parameter values used 
were Q = 1, a = 0.3, e = 0.01, and a delay Pl = 3. The plots in Figure 7 show 
that the average (zl) algorithm approximates the periodic (01) algorithm so welt 
that the plots of 01 and zl vs. n and A1 and A1 vs. n cannot be distinguished. 
In evaluating A1 - A1, we see in Figure 8 that there is indeed some error, but it 
is small and tends to zero as n -~ c~. This actually results from both/91 and Zl 
tending to zero as n -+ c¢, as shown in the top plot of Figure 7. In addition, from 
the lower plot of Figure 7, we note that the adaptive identification algorithm we 
derived correctly identified cl. 

5 C o n c l u s i o n  

In this chapter, we have extended the earlier results of [11, 12, 13, 23] for the 
averaging of periodic delay differential equations and delay difference equations. 
Specifically, we have proven for both classes of systems that the delay is not 
negligible and must be retained for the averaged system to accurately reflect the 
dynamics of the periodic system. This fundamental result forms a basis for the 
continued research in the development and application of averaging methods for 
delay systems in applied mathematics and control theory. 

We considered two simple applications in this chapter: we studied the closed- 
loop feedback control of the cart and pendulum in the presence of high-frequency 
external oscillations and a feedback delay, and the adaptive identification of 
chemical concentrations in a discrete-time pipe mixing problem. In the first ap- 
plication, we saw that the averaging method we proposed produced an averaged 
system which accurately approximated the periodic system. Although the delay, 
in the original time scale, was small, the phase portraits for the system with delay 
and the system without delay were distinct. This observation reaffirms that the 
delay must not be neglected in the averaged system. In the second application, 
we likewise saw that the averaged adaptive identification algorithm accurately 
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Fig. 8. Difference of A1 and hi vs. n from Figure 4.7. Note that the error tends to zero 
a s  n ----P c ~ .  

captured the average behavior of the periodic algorithm. 

The two simple examples presented in Section 4 suggest possible extensions 
to the main theoretical results of this chapter. First, future research will attempt 
to extend the averaging theorems presented in this chapter to infinite time in- 
tervals. Such theorems will allow us to understand the asymptotic behavior of 
solutions to nonlinear periodic delay systems which limit on periodic points or 
periodic orbits. This knowledge is necessary to understand how hyperbolic invari- 
ant structures organize the dynamics of the periodically excited system. Another 
interesting extension is to systems with almost-periodic excitation. This is, of 
course, of importance in systems where the excitation is composed of at least 
two irrationally related frequencies. In terms of practical applications, such a 
result will be useful in the averaging of systems where one of the excitatory 
inputs is noise. Finally, we hope to extend the results presented here to systems 
with time-varying delays. These new results and additional examples shall be 
presented in forthcoming journal publications. 
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Abs t rac t .  A control system designer usually prefers to use rational con- 
trollers. The question of when such a controller exists is considered in 
this chapter, for the class of systems composed of a delay element e - h s  

with interval (finite or infinite) uncertainty in h, followed by a plant 
characterized by a rational transfer function. Explicit conditions for the 
existence of such controllers, are given. Also, a computationally tractable 
design method, which explicitly yields the entire set of all constant gain 
controllers which robustly stabilize a family of systems with uncertainty, 
is described. A desired %ptimal" controller may then be selected from 
the feasible set. The method is extended to the case when the rational 
part of the plant has uncertainties too, and is represented by a trans- 
fer function with independent interval coefficients. Illustrative numerical 
examples are provided. 

1 Introduction 

This chapter concerns the problem of designing rational robust stabilizing con- 
trollers for a system with delay, where interval uncertainty of the delay, as well 
as interval uncertainties of the coefficients of the rational transfer function (per- 
taining to the linear part),  are assumed. 

Although a parameterization of all controllers that  stabilize a given plant 
has been obtained almost two decades ago [23],[4], there is little knowledge to 
date about the above design problem when uncertainties are assumed. The first 
question which arises is to what extent are plants with parameter  uncertainties 
stabilizable by (possibly dynamic) output  feedback. Using the Nevanlinna-Pick 
interpolation, an elegant solution [20] is proposed to the special case where the 
interval uncertainty is only in the gain factor of a linear system with no delay. 
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Binational Science Foundation (BSF), Jerusalem, Israel, and by the Fund for the 
Promotion of Research at the Technion. 
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This is referred to as the "blending problem". An extension was shown subse- 
quently in [11] and [9], where the Nevanlinna-Pick interpolation can be applied 
to a specific choice of a one parameter family of plants. 

If one suffices with stabilizing only the two end points of the one parameter 
family, than the problem reduces to simultaneous stabilization of two fixed co- 
efficients plants, studied by [19]. The problem of simultaneous stabilization of a 
finite number of (fixed coefficients) plants has been studied in [22]. The problem 
of stabilizing a family of interval coefficients plants characterized by rational 
transfer functions with no delay, has been studied in [8], where it was shown 
that a constant gain controller K for the above is any (and only) a constant gain 
controller K which simultaneously stabilizes a certain set of eight fixed coeffi- 
cients plants. Extensions of these results to first order controllers are derived in 
[10] and in [2]. 

A design technique, based on the zero-set approach, which provides the com- 
plete set of constant gain controllers for multi-input multi-output plants under 
uncertainty conditions, has been derived in [5]-[6]. However, the computational 
complexity in applying this technique in the general case, may limit its use. 

Some efforts have been made in stability analysis of time-delay systems. 
The Edge Theorem to quasipolynomial families with constant delays and coef- 
ficients depending affinely on parameters was proposed in [7], a graphical test 
for quasipolynomial families with one interval delay was proposed in [21], and 
necessary and sufficient Hurwitz stability conditions for quasipolynomials with 
interval coefficients and interval delays was proposed in [14] (for a comprehensive 
list of relevant bibliography consult, for example, [13]). 

Hence, it is clear that the problem (in its full capacitance) of stabilizing a 
system with delay, where there is uncertainty in the delay as well as in a number 
of coefficients of the rational part, is a difficult one and far from being completely 
solved. 

The first goal of this chapter is to resolve the question of stabilizability of 
systems with an interval delay and fixed coefficients, by rational controllers and 
to explain how to design stabilizing controllers using these results. This part of 
the chapter is based on [16], 

The rest of the chapter is devoted to design of constant gain stabilizing output 
controllers. In this context, the matter is resolved completely. A computationally 
tractable technique to derive the entire set of all constant gain controllers which 
robustly stabilize a family of interval coefficients plants preceded by an interval 
delay element, is described. This part of the chapter is based on [17]. 

The idea on which the present design technique is based is not related to 
previous results. It is based on continuity considerations in addition to a simple 
observation on what we term the "delay condition", to be explained further. 
However, the implementation of the basic idea becomes possible only by applying 
some recent results with regard to the frequency response envelopes of interval 
coefficients transfer functions [15]. Other forms of envelope results are listed in 
books [1] and [3]. 

The structure of the chapter is as follows: 
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In Section 2 we state the problem for infinite interval delay and give some defini- 
tions. Section 3 deals with the problem of existence of constant gain and rational 
dynamic stabilizing controllers and consideration of simple design algorithms. In 
Section 4 we treat the problem of constant gain controller design for the case 
where the coefficients of the rational transfer function may be interval ones and 
the delay is completely unknown (its interval is infinite). The resulting set of 
controllers robustly stabilize the system independently of delay (IOD). In Sec- 
tion 5 we treat the case where the coefficients of the rational transfer function 
are fixed, but we now assume partial knowledge of the delay, namely a .finite 
interval for the delay. In Section 6 we treat the most general (and most difficult) 
case where both the delay and the coefficients of the rational transfer function 
axe prescribed in finite intervals, and still obtain the entire set of all (and only) 
robustly stabilizing constant gain controllers. We provide numerical examples 
where appropriate, and conclude in Section 7. 

2 Statement of the problem 

Assume that a system transfer function P(s)  is given as a ratio of two relatively 
prime polynomials with fixed real coefficients, namely 

np(s) (2.1) 
P(s)  = dp(s) '  

where 

rip(s) = nkS k -[- nk_lS  k-1 + ' ' "  -{- h i s  T no (2.2) 
dp(s) = dis t + dl_ls  l-1 + . "  + d i s  + do 

In the sequel we assume that 
k < I. (2.3) 

Moreover, suppose that the system includes a delay function e -hs,  where the 
delay parameter can vary in the interval [0, oo). Finally, let C(s)  be any rational 
controller, given by 

nc(s) (2.4) 
C(s)  = dc(s)" 

where nc(S) and de(s) are relatively prime polynomials in s. See Fig. 1 for the 
closed-loop configuration. 

. . . .  

Fig. 1. Closed-loop system. 
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We pose the following two questions: 
Problem 1: When does a constant gain or rational dynamic stabilizing controller 
C exist. 
Problem 2: Find the set of all constant gain or rational dynamic stabilizing 
controllers. 

Let R(s) = nr(s)/dr(s)  be any rational function. 

Def ini t ion 1. A rational function R is strictly proper i] deg(nr) < deg(dr). 

Defini t ion  2. A rational function R is proper if deg(nr) = deg(dr). 

Note that Definition 2 is different from the common one for a proper function. 

3 W h e n  d o e s  a r a t i o n a l  s t a b i l i z i n g  c o n t r o l l e r  e x i s t  

Mathematically, this problem can be stated as follows: detect if there exists at 
least one rational C(s) such that 

dc(s)dp(s) + nc(s)np(s)e -h8 ~ 0 in Res _> 0 V h e [0, oc) (3.1) 

Let H be the set of all Hurwitz polynomials i.e., the set of all polynomials 
whose zeros are in the open left half complex plane. 

T h e o r e m  3. A rational stabilizing controller exists if and only if d v E H. 

For the proof of this theorem we need the following result: 

L e m m a 4 .  Let U be an open set in R '~ such that f ( . )  is defined and differentiabte 
on the closure o] U and f (U)  contains a ball of radius R around the origin. Let 
g(.) be differentiable on the closure o]U and such that [g(s)] < r for every s e U, 
where r < R. Then f - g has a zero in U. 

An exact proof of this lemma is follows from degree theory and will be omitted 
for the sake of brevity. Instead, we provide some intuitive explanations. Consider 
the image of the boundary OU under f ,  which is far away from the origin by more 
that R, and since g perturb by less than r and r < R the image of the boundary 
under f - g will surround the origin. Since the image is simply connected then 
the result will follow. 
Denote 

fh := dp(s) + Ce-hSnp(s) (3.2) 

Then we have the following theorem: 

T h e o r e m  5. If  fh is stable for h e [0, oc) then dp E H. 
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Proof. Assume to the contrary that dp ~ H and distinguish between two cases: 

Case 1. There exists So such that Reso > 0 with dp(so) = O. Then there is a 
neighborhood U of So such that q(U) contains the ball of radius R around the 
origin, and Res > 0 for every s in the closure of U. Since C and np are fixed 
then there is sufficiently large ho > 0 such that ICe-h°snp(s)l < R/2 fbr every 
s E U. By the Lemma there exists a zero of fho in U, which is a contradiction. 

Case 2. This part of the proof is based on the argument principle. Assume that 
dp(jw) = 0 for some real w. Then consider a contour F, which is constructed 
as follows: let p > 0 be a small radius, we take half a circle of radius p going 
through (w - p)j and (w + p)j in the right half plane, and then go along the 
imaginary axis from (w + p)j down to (w - p)j. Taking h very large, we obtain 
that along the straight line segment there will be many encircling of the origin 
for the image of dp + Ce-hsnp, while there will be fewer encirclings along the 
half circle. The last point follows from the following argument. Denote the half 
circle by F0, let C and np be fixed and choose some small e > 0. We then denote 
by F~ the arc F0 N {s : Res > ~}. If h is chosen sufficiently large then Idp(s)I 
dominates ICe-hsnp(s)l on F~ and consequently there will be no encircling of 
the origin for the image of fh on Fe. 

The complement of F~ in F0 is composed of two little arcs, the lower arc is 
denoted 71 and the upper one is denoted 72. The number of encirclings of the 
origin by the image of fh on both 71 and 72 is much smaller than the number 
of encircling by the image of the straight line segment {tj : w - p < t < w + p}, 
which we denote by I. This claim follows from a straightforward estimate of the 
number of encirclings of the origin by the images of fh on l, 71 and 72. This 
number of encircling for, e.g., the line segment l is estimated by ph/~r (recalling 
that ICnp(s)l is much larger than Idp(s)l on l). The above assertion follows from 
a similar estimate for 71 and 72, and the observation that the lengths of 71 and 
72 is much smaller than 2p, the length of l, if e is chosen sufficiently small, n 

Now we are ready to prove Theorem 3. 
Proof of Theorem 3. The delay system can be stabilized for the interval h E [0, co) 
if and only if there exist two polynomials n~ = Cnc and dc such that 

fc = dc(s)dp(s) + e-hSn'~(s)np(s) (3.3) 

is stable for every h E [0, oo). If dp E H then we can choose n¢ and dc such that 
d~ E H, and degdcdp > degncnp and then we can choose C to make fc stable 
for every h E [0, c~). 
On the other hand, suppose that dp ¢ H. Then for every choice of polynomials 
nc and dc whatsoever, dcdp ¢ H and hence by Theorem 5 there cannot exist a 
constant C such that fc in (3.3) is stable for every h E [0, c~). This estblishes 
the other part of the Theorem. 

T h e o r e m  6. When there exists a rational stabilizing controller, there also exists 
a constant gain stabilizing controller. 

Proof. The proof follows immediately because of assumption k _ I. [] 
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4 Stabilizing controllers for IOD systems. 

Now we consider how to find the set of all constant gain stabilizing controllers 
if such exists. Additionally, we assume interval uncertainties in the coefficients 
of the rational part of the system, i.e 

n i <_ ni < nT~, d i <_ di <_ "di (4.1) 

The design procedure yields all stabilizing constant gain controllers, independent 
of delay. 

In the case of a proper plant k = l, we need the following assumption 

dt + Ce-hsnt ~ 0 (4.2) 

for each h E [0, co) and s : Res > 0. This assumption guarantees that the 
coefficient of s to the highest degree does not vanish. Obviously, if k < l, the 
avoidance of "degree reduction" is guaranteed in any case, since dt ~ 0 by 
definition. 

The assumption (4.2) is readily seen to be equivalent to the requirement that 
a constant gain controller for a proper plant may only take on values in the open 
interval 

C e (-Idt/ntl, Idl/n~l) (4.3) 

By continuity (zero exclusion principle), one can see that, assuming (4.2) for the 
case k = l, (3.1) is equivalent for constant gain C to the following conditions 
(4.4)+(4.5) 

dp(s) + Cnp(s) ~ 0 in Res > 0 (4.4) 

dp(jw) + Cnp(jw) e j °  7t 0, ~ E JR, 0 < O _< 27r (4.5) 

The explanation of this observation is clear: condition (4.4) corresponds to sta- 
bility of the closed-loop system without delay, h = 0, (and thus we term it 
"stability condition without delay", or simply, "stability condition"). Increasing 
h from zero to infinity, while keeping the zeros of (3.1) from crossing the imagi- 
nary axis ensures (3.1), provided there is no "degree reduction". Assuming (4.2) 
for the case k = I ensures that there is no "degree reduction", and condition 
(4.5) with 0 < 69 _< 21r ensures the "no crossing" of the imaginary axis. 

In order to interpret condition (4.5), which we term "delay condition", we 
rewrite it in the following form 

C ¢ dp(jw) 
eJOnp(jw ) , w e i R ,  0 < O < 2 r  (4.6) 

Since for h e [0 ,~) ,  O may take on any value in [0,2~r], and C is a real 
number, then (4.6) is equivalent to 

d~(j~o) 
ICI # ~ = I P - l ( j w ) l ,  w E IR. (4.7) 
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Note that the absolute value in the right hand side of (4.7) refers to the 
complex value of dp(jw)/np(jw), whereas the absolute value in the left hand 
side of (4.7) refers to the sign of C. Hence, from the delay condition as expressed 
in (4.7), we obtain the following constraints 

ICI > max [P-l(jw)l , or (4.8) 

ICI < n~n IP-l(jw)i  (4.9) 

However, the constraint (4.8) is not valid for a strictly proper plant because 
]p-1 (jw) I is unbounded and not valid for a proper plant because of Eqn. (4.3). 
On the other hand, the constraint (4.9) includes the requirement (4.3), since 
[dr~nil (in the case k = l) is [P-l(jec)l .  Hence, the only requirements for a 
constant gain stabilizing controller are (4.4) and (4.9). 

The problem of finding the set of all real values of C satisfying the "stability 
condition" (4.4) can be overcome with the aid of the results in [8], where it was 
shown that an interval rational transfer function is stabilizable by a positive 
constant gain controller if and only if certain four rational transfer functions 
with fixed coefficients are simultaneously stabilizable by that same controller. 
Similarly, for a negative constant gain controller, but with another set of four 
rational transfer functions with fixed coefficients. In the context of our problem, 
define 

n 

R(s, C) = dp(s) + CnAs) = (4.10) 
i=O 

with 
ri < r i  <~i  i = O, 1 , . . . , n  (4.11) 

where 

r i = d i + C n { ,  ~ i = d i + C ~ i ;  if C > 0  (4.12) 

and 
r~ = d { + C ~ i ,  ~ = d i + C n ~ ;  if C < 0  (4.13) 

Denote the four Kharitonov [12] polynomials associated with the interval poly- 
nomial R(s,C) for positive C (Eqn. (4.12)), by R+(s,C), i = 1, . . . ,4 ,  and 
denote the four Kharitonov polynomials associated with R(s, C) for negative 
C (Eqn. (4.13)), by R[(s ,C) ,  i = 1, . . . ,4 .  The coefficients of each of these 8 
polynomials depend linearly on only one parameter C. To find the intervals of 
C for such a polynomial to be stable, we propose the following theorem, which 
is simpler and more explicit than just to use a Routh table parametrically in C 
and solve the inequalities for the first column of the table to be positive. 

T h e o r e m  7. Let R(s, C) as in (~.10), represent one of the pertinent Kharitonov 
polynomials. Let d~ (w) and do (w) be, respectively, the even and odd parts of d v (s), 
where s = jw. Let he(W) and no(W) be, respectively, the even and odd parts of 
np(s), where s = jw. Then~ the values of C which are the end points of the 
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intervals of C for which R(s, C) is stable (satisfies (4.4)), are from the set given 
by: 

and 

C = -  dk/nk ( i lk  = l )  (4.14) 

(4.15) 

n 

F(s)  = ~ ~ 8  ~ , ~_~ < ~, < n~.  (4.19) 
i=O 

We are interested in 

f m a x  (~)) .,x = = max { IF(j<,-')I } and F,-,,~n(<,.') " min { IF(j<,-')I } (4.20) 
a_. i <a i  <~ i  a.~ <a l  <~i  

Denote 
Re max ~ ~ o  - 0/2 t-d2 -~- ~ 4  cd4 - ~..~ (.d6 Jr  " ' "  

Fomax ~-" ; d ( ~ l  - ~_~qtM 2 + ~ s w  4 - otTw 6 - { - . . . )  

Fe mi .  ___a a-o - ~2w2 + a__4w4 _ ~6w6 + " "  

Fomi. ~= w ( ~  - "a3w 2 + ~ w 4  _ ~ 7 w 6  + . . . )  

(4.21) 

c = -  d o ( ~ ) / , ' , o ( < ~ , ) = - ¢ ( ~ , ) / n , ( ~ , )  

where wi are the real zeros of the following equation 

do(wi)ne(Wi) - de(wi)no(wi) = 0 (4.16) 

Remark 1. If de(wi) = ne(Wi) = 0 or do(wi) = no(wi) = 0, the meaningful 
expression in the right hand side of (4.15) should be used. We assume that  np(s) 
and @(s) have no common factor, thus the case de(wi) = ne(wi) = do(wl) = 
no(wi) = 0 is void. 
Proof of Theorem 7. By continuity considerations, a transition from a stability 
interval to an instability interval, or vice versa, can only occur when a zero of 
R(s, C) crosses the imaginary axis of the s plane at a finite point, or there is a 
degree reduction in R(s, C). For the latter to occur, (4.14) must be satisfied. A 
finite zero crossing implies 

dp(jw) + Cnv(jw ) = 0 (4.17) 

which is equivalent to the two simultaneous equations 

de(w) + Cne(w) = 0 ,  do(w) + Cno(W) = 0 .  (4.18) 

It is readily verified that  the solution of (4.18) is given by the pairs (wi, C) 
defined in (4.15) and (4.16). m 

Turn now to the "delay condition" (4.5). Firstly, it is obvious that  since the 
interval coefficients of the numerator polynomial are independent of those of the 
denominator polynomial, the ratio of the maximum (minimum) of the numerator 
amplitude and the minimum (maximum) of the denominator amplitude yields 
the exact envelope of the amplitude of the family of rational functions. Thus, we 
only need to be able to treat the amplitude of a family of interval polynomials: 
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and 
o A ai = a_i + ~ i ,  i = 0 , . . . , n  (4.22) 

Then, it is shown in [15] that Fmax(W) coincide with one of the following four 
fixed coefficients expressions 

[Femax+jFomaxl, [Femax+jFominl, IFemin+jl~omax[, [Femin+jFominl, (4 .23)  

and Fmax(~) can change from one of the fixed coefficients expressions in (4.23) 
to another of the fixed coefficients expressions in (4.23) only at a finite number of 
frequencies, which can be computed. Concerning Fmin(W), it may coincide with 
nine fixed coefficients expressions: the four expressions listed in the right hand 
side of (4.23), in addition to IFemax[, ]Feminl, IFomaxl, IFominl and zero. The 
"change frequencies" for Fmin (w) can also be computed. 

Then, we can summarize the design method which yields all stabilizing con- 
stant gain controllers for this case, as follows: 

Algorithm 1 

A. Stability condition 

1. Determine the values of positive C yielded by Theorem 7 (Eqns. (4.14) and 
(4.15)) for each of the polynomials R+(s, C), i = 1, . . . ,  4. 

2. Choose an arbitrary value of C in each of the intervals created by the values 
computed in step 1, and determine whether the corresponding R + (s, C), i = 
1 , . . . ,  4, is stable. 

3. Intersect the results in step 2, to determine the intervals of positive C for 
which all four R+(s, C), i = 1, . . . ,  4, are simultaneously stable. 

4. Repeat steps 1, 2 and 3 for negative C, with the polynomials RT~(s, C), i = 
1, . . . ,4 .  

B. Delay condition 

1. Determine npmax(W) by (4.23). 
2. Determine dp rain(W) by one of the nine expressions indicated in the text. 
3. Compute IPmil(jw)l using dpmin(W)/npmax(O3). 
4. The set of all stabilizing C according to the "delay condition" is 

C E ( -  m~n ]Pmiln(jw)[, m~n IPmiln(jOJ)l). (4.24) 

C. Intersect results of A and B. 
Note that the case of fixed coefficients rational transfer function with un- 

known delay, is a special case of the above. 
Example 1. Consider a second order fixed coefficients transfer function 

s + 1 (s + 1) (4.25) 
P(s)= s 2 + 5 8 + 6 -  ( s+2) ( s+3)  

From the "stability condition" we obtain that the pertinent interval is C E 
(-5,  c~). The "delay condition" renders I C] < 4.56. Combining these two results 
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we readily obtain a final answer: The all and only interval of constant gain 
controllers which stabilize (4.25) cascaded with an unknown delay is 

C e (-4.56, 4.56) (4.26) 

In the design algorithm we limited ourselves to the case of constant gain 
stabilizing controllers. One can easily extend the results to the case of rational 
dynamic stabilizing controllers. As shown previously, if the plant is not stabiliz- 
ible with a constant gain controller, then it is not stabilizible with any rational 
controller. A parameterization of all rational stabilizing controllers is the follow- 
ing: 

1. Choose an arbitrary Hurwitz denominator dc E H. 
2. Choose an arbitrary numerator nc, but deg(ncnp) _< deg(dcdp) and there is 

no unstable zero-pole cancellation between nc and dp. 
3. For each pair (no, dc) determine by algorithm 1 the set of constants such 

that Cnc/dc is a stabilizing controller. 

Remark 2. If we remove the assumption k _< l (Eqn. (3)) and consider the case 
k > l, then a constant gain stabilizing controller does not exist. Instead, it 
is always possible to divide the transfer function of the plant by any Hurwitz 
polynomial, say t(s), such that the extended transfer function np(s)/(dp(s)t(s)) 
is now a proper or strictly proper function with a stable denominator. This 
extended plant is evidently stabilizible by a constant gain controller, say K. So, 
a controller K/t(s) is a pertinent dynamic stabilizing controller of the original 
plant, in the case k > I. 

5 Stabilizing controllers for finite interval delay systems 

In this section we discuss a design method for constant gain controllers for delay 
systems, where the delay is partially known. It is more reasonable to assume that 
the delay is known to be bounded by a certain finite bound H than to assume 
that the delay is not known at all and may take on any value without bound. For 
methodical purposes (clearness of presentation) we consider first systems with 
fixed coefficients, and then add the assumption of interval coefficients, treated 
in Section 6. 

This case of a finite delay interval is much more complex than the corre- 
sponding case of stability independent of delay, treated in Section 4. However, 
we are still able to provide a design method which yields all stabilizing constant 
gain controllers, where the plant is preceded (or cascaded) by a delay element 
(see Fig. 1), with 

0 < h < H (5.1) 

and H is a given real number. 
Assume that the polynomials np(s) and dp(s) are polynomials with constant 

coefficients. Consider a vector in the complex plane e j~h for a fixed value of the 
frequency ¢v = wl, and h in the interval [0, HI. The magnitude of this vector is 
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equal to 1 and the phase is equal to wl h. So, the set of all possible phases for 
/z) ----- ~d 1 and h in (5.1) is the interval [0,wlH]. Let us define a critical frequency 
wc by 

2~ 
= (5.2) 

If Wl >_ wc then by a proper choice of h (not necessarily unique) we can obtain 
any arbitrary phase of e j~h from [0, 2~]. If w, < wc then by a proper choice of h 
we can obtain any phase in the interval [0, wl HI (see Fig. 23). 

0} 

l lm l Arg 

(a) (b) 

Fig. 2. (a) Possible phases of e j~lh for various h. (b) The family of all possible phases 
for e j~h. 

Fig. 2b illustrates the family of possible phases for different frequencies and 
h as in (5.1). Recall the delay condition in form (4.6) 

@(jw) eJh,,, (5.3) 
e ~ np(jw) 

Define G(w) := @(jw)/np(jw)  = P - l ( j w ) .  
For wl fixed, G(wl) can be interpreted as a vector in the complex plane (see Fig. 
33). 

Observa t ion :  

1. If there exists any hi in (5.1) such that 

Arg [G(Wl)] + wlhl = 0 (mod2r) (5.4) 

then the right hand side of (5.3) becomes real and negative. The correspond- 
ing C < 0 does not satisfy the "delay condition". 

2. If there exists any h2 in (5.1) such that 

Ar9 [G(Wl)] + ~ + wlh2 = 0 (mod2~) (5.5) 

then the right hand side of (5.3) becomes real and positive. The correspon(~- 
ing C > 0 does not satisfy the "delay condition". 
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3. If there exist both hl and h2 such that (5.4), (5.5) are satisfied, then the 
corresponding =kC do not satisfy the "delay condition". 

A Ar~ 

(a) (b) 

Fig. 3. (a) Vectors G(wl) and G(wl) + It. (b) Different kinds of frequency intervals. 

In order to find all possible values of C satisfying the "delay condition", 
we should plot -Arg[G(w)](mod2r) and -(Arg[G(w)] + 7r)(mod21r) and check 
for each w whether the plots are "inside" or "outside" the family wh. If for 
some Wo, a phase plot is inside the family, then the value of C = [G(wo)[ (or 
C = -[G(wo)l) does not satisfy the "delay condition". Thus, we make a search 
of C over all frequencies inside the family wh. Fig. 3b illustrates all possible 
different situations: for the frequency interval [0, wl] both -t-C satisfy the "delay 
condition"; for the interval [wl,w2], C < 0 satisfies the "delay condition" but C > 
0 does not satisfy the "delay condition"; for the intervals [w2, w3] and [w4, oc] both 
=t:C do not satisfy the "delay condition"; and, finally, for the interval [w3, w4], C > 
0 satisfies the "delay condition" but C < 0 does not satisfy the "delay condition". 
We summarize the "delay condition" in this case by the following algorithm 
which replaces the one in Algorithm 1 (Evidently, the "stability condition" is a 
special case of the one in Algorithm 1). 

A l g o r i t h m  2 (Delay condition) 

1. Solve the equation 

Arg [G(w)] + wH = 0 (mod2~r) (5.6) 

Let the real positive solutions of (5.6), in addition to the frequencies wi for 
which - A r g  [G(wi)] = 27r, be denoted by the ordered sequence wl < w2 < 
" ' "  ~ l .  

2. If ~ is odd, we construct m := (~ + 1)/2 intervals 

/1 = x2 = I m =  

If ~ is even, we construct m := £/2 + 1 intervals 

/1 = [0,wl], /2 = [w2,w3],...,Ira = [wt, oo]. 
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3. Denote by 

G i -- min IG(w)!,  Gi  = maxIG(w)l, i = 1, . . .  ,m 
- -  w E l i  w e l l  

(5.7) 

Then, all and only values of C < 0 which satisfy the "delay condition" are 
those C for which ICI do not belong to any of the intervals 

[Gi, Gi] , i =  2 , . . . , m  (5.8) 

4. Replace (5.6) with 

Arg  [G(w)] + ~ + w H  = 0 (mod  2~r) (5.9) 

and add the frequencies wi for which - A r g [ G ( w i ) ]  = 7r (instead of 
- A r g  [G(wi)] = 2~), to the ordered sequence wl, w2, . . . ,  wt. Repeat steps 2-3 
for the positive values of C which satisfy the "delay condition". 

5. If k = l, intersect obtained result with interval (-Idl/n~l, I dl/nll) (assumption 
(4.3) is still valid for h E [0, H]). 
Note that, if k < I then G(cc) = cc and hence interval [Gm, Gm] = [Gm, 0o]. 

Remark  3. An extended version of this algorithm for bounded interval delay 
system h E [H1, H2] can be found in [18]. 

Example 9. Consider the following transfer function with fixed coefficients 

s 2 + 5s + 6 (s + 2)(s + 3) 
P ( s )  = s2 + 4s - 5 - (s - 1)(s + 5) (5.10) 

Since this function has an unstable pole, it is impossible to stabilize it IOD by a 
rational controller. However, assume now a finite interval of uncertainty in the 
delay, say, h e [0, 0.5]. In this case Fig. 4 illustrates the procedure: 

An intersection of -Arg[G(w)]  and w H  (solid and dashdot curves) takes place 
at only one frequency w = 12.50. Namely, ~ is odd and we should consider the 
frequency interval [12.50, oc) in order to check the delay condition for negative 
C. From Fig. 4a we obtain C E ( -c~, -1 .04)  U (-1,0) .  In the same manner, an 
intersection of -Arg[G(w)]  - lr and w H  (dashed and dashdot curves) occurs at 

= 5.73 defining the frequency interval [5.73, c~) for positive C. From Fig. 4a 
we obtain C E (0, 1) U (1.13, co). So, from the delay condition we obtain: C E 
(-cc,--1.04) U (-1,  1) U (1.13, oo). Taking into account the fact that P(s) is 
proper, condition (4.3) renders C E (-1,  1). 

The stability condition renders the following intervals of C: 
C E ( - o o , - 1 )  U (0.83,c¢). 

Intersecting the intervals obtained from the "stability condition" with the 
intervals obtained from the "delay condition" and condition (4.3), we obtain the 
final result of all and only intervals of constant gain controllers which stabilize 
(5.10) cascaded with a delay element in the interval [0, 0.5], 

c 6 (0.83,1.0) (5.11) 
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Fig. 4. (a) Amplitude of G(jw). (b) -Arg[G(w)] (solid curve), -Arg[G(w)]-~r (dashed 
curve) a~d wH (dashdot curve). 

As expected, although it is not possible to stabilize this system IOD by a constant 
gain controller, it is stabilizible by a constant gain controller for a finite delay 
interval [0, 0.5]. So, Example 2 gives immediately the positive answer to the 
following question: do there exist such cases for dp ¢ H which are stabilizable 
by a rational controller? Moreover, our approach allows to solve the following 
problem: we are given a rational part of the plant and we are limitited in use of 
low-order (for example, first order) controller, say, with positive constant gain. 
Estimate the upper value H of the delay parameter h such that  the closed-loop 
system still remains stable. 

Example 3. Let the transfer function of a plant be 

s - 2  
P(s) = (5.12) 

s - 1  

If the interval of the unknown delay is infinite, this plant cannot be stabilized by 
a rational controller, as implied by Theorem 3. Assume that  h E [0, H], where 
H is finite. Clearly a positive constant gain stabilizer does not exist, no matter 
what the value of H is. However, consider a first order rational controller 

C ( 8 )  = C s + a s + b (5.13) 
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where a, b and C are real  numbers.  The  closed-loop character is t ic  polynomial  
for the  "stabi l i ty condit ion" is 

(C + 1)s ~ + (Ca - 2C + b - 1)s - (2ac + b) = 0 (5.14) 

To have a closed-loop stabil i ty we demand  

C + I > 0  

Ca - 2C + b > 1 (5.15) 

2aC + b < 0 

For example  a sat isfactory choice is 

a = - 6 ;  b = 1 0 ;  C = 0 . 9 .  (5.16) 

One can check t ha t  assumption (4.3) is satisfied for this controller,  i.e becomes 
0.9 E [ -1 ,  1]. 

In order  to  find the maximal  value of H for which the "delay condit ion" is 
also satisfied, we use a lgor i thm 2. To this end, we need the  ampl i tude  and the 
phase of P ( j w ) - l C ( j w )  -1, which are shown in Fig. 5. T h e  solid line in Fig. 
5b describes - A r g [ P - l ( j w ) C - l ( j w )  and the dashed line in Fig. 5b describes 
-[Arg[P - l ( j w ) C  -1 (jw)] + ~r]. 
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Fig. 5. Amplitude (a) and phase (b) of the open-loop transfer function. 

Adding the plot  of wH versus w to Fig. 5b, it can be deduced,  t ha t  for any 
H < 0.18 this plant  is stabilizable by the first order  control ler  (5.13), (5.16). 
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6 Systems with interval coefficients 

Suppose now that the delay parameter h can vary in the finite interval (5.1) in 
addition to the assumption that np(s) and @(s) are polynomials with interval 
coefficients (4.1). This case is the most realistic of all previous cases, from the 
practical point of view. As expected, this problem is also the most difficult 
from the computational and algorithmical points of view. The algorithm for the 
"stability condition" (part A) is absolutely identical to the one in Algorithm 1. 
However, the algorithm related to the "delay condition" (part B), becomes more 
complicated. We have to modify the one described in Section 5 in order to 
incorporate the fact that in the present case both the amplitude and phase of 
G(w) = p-1 (jw) are not fixed. 

To this end we use again the results in [15]. In addition to the possibility of 
computing the bounds (envelope) of 

Vmax (~o) /" = max lG(w)l , Groin(w) ~ min IG(a,)t. (6.1) 

where maximum and minimum are taken over the set of all possible coefficients, 
discussed above, it is also shown in [15] how to compute the bounds (envelope) 
of the phase of an interval rational function. Let ~a(w) and ~b(w) denote the 
two bounds of Arg[G(w)], for each w. Let ~b(W) be the lower bound of the 
phase and O,(w) the upper bound of the phase. Then, it is shown in [15] how to 
explicitly determine a finite number of intervals on the frequency axis w, in each 
of which ~a (w) and ~b (co) take on the values of the phases of certain explicit 
fixed coefficients rational functions. 

Having the ability to compute Gmax(W), Gmin(W), ~a(W) and ~b(W) in a 
tractable way, it is now clear how to modify the algorithm described in Section 
5. Since this case is the most realistic one (and the most complex one), the 
design method which yields all stabilizing constant gain controllers for this case, 
is formulated explicitly as follows: 

A l g o r i t h m  3 

A. 

B. 

1. 

S tab i l i ty  condi t ion  (exactly as in Algorithm 1) 

De lay  condition 

Solve equation 
~b(~) + wH = 0 (mod27r) (6.2) 

Let the real positive solutions of (6.2), in addition to the frequencies wi for 
which - ~ ( w i )  = 2~r, be denoted by the ordered sequence Wl < w2 < --. < 
mr. 

2. If g is odd, construct m := (e + 1)/2 intervals 

I1 = i2  = , I r a  = 

If g is even, construct m :--- ~/2 + 1 intervals 

/1 = [0, wl], 12 = [w2, w3],.. . ,  Im= [wt, oo]. 
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3. Denote by 

G i = min Groin(W) , Gi = max Gmax(W) , i = 1 , . . .  ,m (6.3) 

Then, all and only values of C < 0 which satisfy the delay condition are 
those C for which ]C[ do not belong to any of the intervals 

[G_ i,'Gi] , i =  l , . . . , m  (6.4) 

4. Replace (6.2) with 

cb(~) + ~H + . = 0 (rood2.) (6.5) 

and add the frequencies wi for which -~a(wi)  = rc (instead of -~a(Wi) = 27r) 
to the corresponding ordered sequence. Repeat steps 2-3 for the positive 
values of C which satisfy the "delay condition". 

5. If k = l, intersect obtained result with interval (-[dl/f~tl, ]dl/f~tl), where 
f~t = max{l~],  tntl} and dt = min{ l~ ,  Idtt}. Note again that,  if k <: l then 
G(oo) = 0o and hence interval [G_Gm, Gm] = [G__.m, 0o]. 

C. Intersect results of A and B. 

Example 3. Consider again the same transfer function H(s) as in example 2, but  
with 5% uncertainty in the coefficients of s 1 and s o and a finite delay interval 
h • [0, 0.5]. In this case, Fig. 6 illustrates the procedure of Algorithm 3. 

An intersection of --+b(W) and wH (lower solid and dashdot curves) takes 
place at only one frequency w = 12.30. The solution of equation -+:(ca)  = 21r is 
empty. Namely, £ is odd (~ = 1) and we should consider the frequency interval 
[12.30, 0o) in order to check the delay condition for negative C. From Fig. 6a we 
obtain 

C • ( -oo ,  -1.07) U ( -1 ,  0) (6.6) 

In the same manner an intersection of - (~b(w) + ~r) and wH (lower dashed and 
dashdot curves) occurs at w = 5.60 defining the frequency interval [5.60, 0o) for 
positive C. (Again, the solution of -~a (w)  = ~ is empty). 

From Fig. 6a we obtain 

C E (0, I) U (1.19, oo) (6.7) 

Taking into account condition (4.3) we have 

C e ( -1 ,  1). (6.8) 

The pertinent intervals obtained from the "stability condition" for each of the 
polynomials 
R~(s ,C) ,  R [ ( s , C ) ,  ( i - -  1 , . . . , 4 )  are 

R+: (0.754, ~ )  R+: (0.754, ~ )  R+: (0.921, ~ )  R+: (0.921, 0o) 
n7  : ( - oo , -1 )  n ;  : ( -00 , -1 )  R ;  : ( - ~ , - 1 )  R ;  : ( - ~ , - 1 )  
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Fig. 6. (a) Amplitude envelope of the family G(w) (minimal and maximal curves). (b) 
-4~a(w), -~b(w)  (solid curves), -4~a(w) - ~r, --~b(W) -- lr (dashed curves), and w H  
(dashdot curve). 

The intersection of the above intervals renders, as a result of the "stability 
condition", the interval 

C E ( -oo ,  - 1 )  U (0.921, oo) (6.9) 

Intersecting the intervals obtained from the "stability condition" (6.9) with 
the intervals obtained from the "delay condition" intersected with condition 
(4.3), namely (6.8), we obtain the final result. All and only intervals of constant 
gain controllers which stabilize (5.10) with 5% uncertainty in coefficients and 
cascaded with a delay element in the interva~ [0, 0.5] are: 

C e (0.921, 1) (6.10) 

Note that,  as expected, 

(6.10) C (5.11) (6.11) 

Taking 10% uncertainty in coefficients instead of 5%, we obtain that  the stability 
condition renders the following interval: C E ( -oo ,  - 1 ) O  (1.019, c~). Intersection 
of this interval with (6.8) yields an empty interval. We conclude that there is no 
constant gain controller which can stabilize the system with 10% uncertainty. 
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7 C o n c l u s i o n  

Rational Stabilizing Controllers 

Assuming that an engineering system has an unknown (or partially known) 
delay, in addition to uncertainties in the coefficients of the rational part of its 
transfer function, is on one hand very realistic from the standpoint of real life 
systems, and on the other hand almost has not been considered in the literature. 
The reason for this stems from the mathematical complexity of this difficult 
problem. 

First, this chapter deals with the problem of stabilization of a delay system 
by a rational controller. We focus on delay systems independently of delay. The 
necessary and sufficient conditions for existence of a constant gain controller are 
derived. These conditions are easily extended to the case of stabilization by any 
rational controller. 

Next we discuss the problem of designing stabilizing controllers for such sys- 
tems. We treat only the simplest ones namely, static constant gain controllers. 
However, for this class of controllers, we are able to derive a tractable systematic 
design method which yields the entire set of such feasible stabilizing controllers. 
The designer is now in an excellent position to choose the optimal controller (in 
this class) according to whatever criteria is best for the case in hand. Evidently, 
the method also algorithmically answers the question of existence of a, constant 
gain controller. An empty set result would mean that no constant gain controller 
can stabilize the system. 

The derivation of the design method is carried out in an increasing complex- 
ity order. Firstly, it is assumed that the delay is completely unknown (infinite 
interval). Then, we treat the case of fixed coefficients, but assume that the de- 
lay is known to take on a value in a given finite interval. Finally, we derive the 
method in the case where the delay is in a finite interval and the coefficients of 
the rational function are also interval ones. By working out the same example for 
all cases, we can see the change in the interval of the feasible controllers, which 
is consistent with the various assumptions. For example, assuming an infinite in- 
terval for the delay yields an empty set of feasible controllers whereas assuming 
a finite interval for the delay (partial knowledge), yields a non-empty set. Also, 
assuming uncertainty in the coefficients of the rational transfer function yields 
a smaller (included) interval of feasible controllers than assuming fixed (known) 
coefficients. If the uncertainty in the coefficients increase, we again find an empty 
set of feasible controllers, as in the case of infinite daley interval, although the 
finite delay interval remains as previously. 

These results allow to obtain design algorithms for stabilizing controllers, 
when appropriate. Conditions for existence of rational controllers for finite in- 
terval delay systems and design algorithms require future research. Other ex- 
tensions of the approach derived in this paper may be studied in the following 
directions: dependency of the coefficients of the rational transfer function on 
physical interval parameters and multi-input multi-output systems. 
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Abstract .  This chapter considers the problem of stabilizing linear and 
nonlinear continuous-time systems with state and measurement delay. 
For linear systems we address stabilization via fixed-order dynamic out- 
put feedback compensators and present sufficient conditions for stabi- 
lization involving a system of modified Riccati equations. For nonlin- 
ear systems we provide sufficient conditions for the design of static full- 
state feedback stabilizing controllers. The controllers obtained are delay- 
independent and hence apply to systems with infinite delay. 

1 Introduction 

In dynamical systems such as the control of flexible structures with non- 
collocated sensors and actuators, teleoperators, biological systems [1], and elec- 
trical networks [2], time delay arises frequently and can severely degrade closed- 
loop system performance and in some cases drive the system to instability. 
Since controllers designed with the assumption of instantaneous information 
and power transfer may fail to stabilize dynamic systems with time delay [3] 
it is of paramount importance that delay system dynamics be accounted for 
in the control-system design process. There exists an extensive literature de- 
voted to the control of dynamical systems with time delay (see, for example, 
[4, 5, 6, 7, 8, 9, 10, 11, 12] and the numerous references therein). Three main 
approaches can be distinguished for designing stabilizing controllers for delay 
systems. Namely: 

i) Stabilization independent of delay amount [13, 14]: In this approach the delay 
can be large (even infinite) without destabilizing the closed-loop system. 
However, the conditions for stabilization are often conservative. 

ii) Stabilization dependent on delay amount [15, 16, 17]: Such approaches rely 
on Razumikin-like theorems [18] and provide stabilization conditions if the 
delay is less than a given amount. 

iii) Stabilization based on delay amount [19, 20]: In this approach there ex- 
ist delay windows which allow a stabilizing compensator to exist, while no 

205 



206 Stabilization of Linear and Nonlinear Systems 

stabilizing compensators are possible outside these windows. This approach 
however applies to a restricted class of systems. 

In this chapter we design feedback controllers which are independent of the 
delay amount. Furthermore, we address both linear and nonlinear dynamical 
systems. Specifically, we present a rigorous development of sufficient conditions 
via fixed-order dynamic compensation and static full-state feedback controllers 
for stabilization of systems with state and measurement delay. For linear plants 
these sufficient conditions are in the form of a coupled system of algebraic Ric- 
cati equations that explicitly characterize dynamic controllers of fixed dimension 
while for nonlinear plants our sufficient condition is given by a modified Riccati 
equation for characterizing static full-state feedback controllers. We emphasize 
that our approach is constructive in nature rather than existential. In particular, 
as opposed to the results of [6] which are based on the total stability theorem 
[21] our sufficient conditions provide explicit formulae for controller gains that 
guarantee stabilization of systems with time delay. For the linear plant case, 
in order to account for closed-loop system performance our framework also in- 
cludes minimization of a given performance functional. Finally, even though for 
simplicity of exposition we do not address system parametric uncertainty as in 
[7, 22, 23] the proposed approach can be merged with the guaranteed cost control 
approach [24] to provide robust stability and performance in the face of system 
uncertainty and system delay. 

The contents of the chapter are as follows. In Section 2 we state the problem 
of fixed-order dynamic compensation for systems with state and measurement 
delay. Sufficient conditions for stabilization of systems with time delay are given 
in Section 3 Section 4 provides design equations for characterizing fixed-order 
dynamic controllers for linear systems with time delay. In Section 5 we state the 
full-state feedback control problem for nonlinear systems with time delay and 
provide design equations for full-state feedback controllers. Section 6 provides 
two illustrative numerical examples. Finally, Section 7 gives conclusions. 

IR, IR ~x~, ]R ~ 

0 r, tr 0 
In,0, 

1t-I1  
Amln(Z) 
O~, ~¢, £, O" 
n, l, m ,  nc, ft 
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A,  B ,  C 

Ad,Cd 
Ae, Be, Ce, K 

Yl,½ 
R1, R2 

N o m e n c l a t u r e  

-real  numbers, r x s real matrices, IR rxl 

-transpose, inverse, trace 
- r  x r identity matrix, r × r zero matrix 
-Euclidean vector norm 
-minimum eigenvalue of the symmetric matrix Z 
-real  positive scalars 
-positive integers; 1 < nc <_ n; f~ = n + nc 

- n - ,  m - ,  l - ,  n e - ,  ft - dimensional vectors 
- n  x n, n x m, l x n matrices 
- n  x n, l x n matrices 
- n o  × no, no x I , m  x nc, m x n matrices 
- n  × n, l x I matrices 
--n x n, m x m matrices 



Time-delay Systems 207 

2 F ixed-Order  Control ler  Synthes i s  for Sys tems  w i th  
T i m e  De lay  

In this section we introduce the fixed-order dynamic compensation problem for 
linear systems with state and measurement delays. Specifically, given the n th- 
order stabilizable and detectable dynamical system, where stabilizability and 
detectability are defined in the sense of [25], with state and measurement delay 

2(t) = Ax(t)  + Adx( t - -  Td) + Bu(t),  t E [O,c¢), ~ d > 0 ,  

x(t) = ¢(t), t • [-rd, 0], x(0) = ¢(0) = x0, (2.1) 
y(t) = Cx(t) + C d x ( t -  Td) , (2.2) 

where u(t) E lR m, y(t) • ]R l, and ¢ : lR + -+ IR n is a continuous vector valued 
function specifying the initial state of the system, determine an ntch-order (1 < 
n~ _< n) dynamic compensator 

~c(t) = Aczc(t) +Bey(t ) ,  xc(O) = Xco, (2.3) 

u(t) = Cc~( t ) ,  (2.4) 

which satisfies the following design criteria: 
i) the closed-loop system (2.1)-(2.4) is asymptotically stable; and 
ii) the performance functional 

J(x ( t ) , x~( t ) , x ( t  - rd)) ~= L(x ( t ) , xc ( t ) , x ( t  - r d ) ) d t ,  ( 2 . 5 )  

where L : IR n x 1R TM x IR n ~ IR, is minimized. An explicit characterization of 
L(x(t),  x~(t), x(t  - Vd)), t _> 0, rd > 0, is given in Section 3 

3 Sufficient Condi t ions  for Stabi l izat ion of  Sys t ems  w i t h  
T i m e  De lay  

In this section we provide a Riccati equation that guarantees that the closed-loop 
system (2.1)-(2.4) consisting of the nth-order time-delayed system (2.1), (2.2) 
and the nth-order dynamic compensator (2.3), (2.4) is asymptotically stable. 
First note that for a given fixed-order controller (Ac, Be, Co) the closed-loop 
system (2.1)-(2.4) can be written as 

x(t) = A~(t) -t- .4dS:(t -- Td), ~(0) = X0, t E [0, CO), Td > 0, (3.1) 

where 

~(t) zx [ x(t) ]xc( t )  .~ z~ [ A  B C c ]  Ad z~ fAd  0nxn~ ] .  
= ' = BcC Ac ' = BcCd One×no 

For the statement of the next result define 

= O n ~ × n  On~ " 
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T h e o r e m  1. Let (Ac, Bc, Co) be given. Suppose there exists an ?t x ¢t positive- 
definite matrix [9 and scalars a, c > 0 such that 

o = 2TP + PA + cP + a2i + a-~PAdA~P + [~, (3.2) 

where [~ is an ~ x fi nonnegative-definite matrix. Then the function 

V(~c) = 5cTP~2 + a 2 ~:T(s)]2(s)ds, (3.3) 
- -  T d 

is a Lyapunov function that guarantees that the closed-loop system (3.1) is glob- 
ally asymptotically stable. 

Proof. First note that since/5 is positive definite it follows that the Lyapunov 
function candidate V(~) given by (3.3) is positive definite. The corresponding 
Lyapunov derivative along the trajectories 2(t), t :> 0, of the closed-loop system 
(3.1) is given by 

~'(5:(t)) = ~T( t ) (ATp +/sf t)2(t)  + 2~W(t -- 7d)ATp~(t) 

+a -~ $T(s)I~z(s)ds , t >_ O, (3.4) 
- - T  d 

or, using 

- -  ~T(s)]~(s)ds = ~,T(t) TlS:(t) -- xT(t  -- rd)]2(t -- "rd) 
dt _~  

(3.4) becomes 

y ( ~ ( t ) )  = ~T(t)(AvP + PA + ~2i)~(t) + 2 ~ v ( t  - ~d)A~P~(t) 
--a2~cT(t-- Td)[&(t -- rd), t > 0. (3.5) 

Furthermore, using (3.2) and grouping terms yields 

~ r ( ~ ( t ) )  m - - £ ~ T ( t ) P ~ ( t )  - -  ~ r ( t ) R x ( t )  - -  [ 0 ~ - I . ~ d T P x ( t )  --  O ~ i x ( t  --  Td)]  T 

• [ a - l f t T p ~ ( t )  - -  £ ~ ( t  - -  Td)], t >_ 0. (3.6) 

Since 15 is positive definite it follows that V(~(t)) < 0, ~(t) ~ 0, t >__ 0, and 
hence V(.) is a Lyapunov function for the closed-loop system (3.1). [] 

Next, we consider an explicit characterization of L(x(t),  xc(t), x(t  -Td) )  in 

(2.5) Specifically, l e t / ~ =  JR1 0 ] " 0 CTR2Cc , where R1 > 0 and R2 > 0, and 

define 

L(x( t ) ,xc( t ) ,x ( t  - rd)) =a ~T(t)[ep +/~1 + a-2P-~d-4Tp]£'(t) 
+uT (t)R2u(t) + a2~2T (t - -  T d ) - r x ( t  - -  Td) 
--2~T(t--  rd)ATP2(t), t _> 0, (3.7) 
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where [/1 =A [ . 0  l r  ~_ 0[01. Now, s i n c e ~ ( t ) ~  0 a s t  ~ ec, where£,( t ) , t  >_ 0, 
I. .i 

satisfies (3.1), the performance functional (2.5) reduces to 

J(x( t ) ,  zc(t), x( t  - ra)) = ~T(t)[EP +/~1 + a-2/sfidftff/5]~c(t) 

+uT (t)R~u(t) + a2~T (t -- rd ) i~ ( t  - Td) 

--2~cT(t- rd).;tTP~c(t)]dt 

= _ ~/ooo fz(~)dt 

= V(:~(O))- lira V(fc(t)) 
t----+ OO 

= ~T(0)P~(0 )  + ~, (3.s) 

f where ~ =~ (~T(8)¢(8)d8 is a positive constant. With L(x(t) ,  xc(t), x ( t -  rd)) 
T d  

given by (3.7) the performance functional (2.5) has the same form as the 
H2 cost in standard LQG theory. Specifically, J(~(0)) = ~T(0)/5~(0) + • = 

tr /3~(0)~T(0) + ~. Hence, we replace ~(0)~T(0) by 1) zx [ V1 0 ] 
= ~ 0 BcV2B T ' 

where V1 > 0 and V2 > 0, and proceed by determining controller gains that 
minimize tr/51) + ~. This leads to the following optimization problem. 
Auxi l iary  Min imiza t ion  Problem.  Determine (Ae,Bc,Cc) that minimizes 
:7(/5, Ac, Be, Cc) ~= tr/517 where/5 > 0 satisfies (3.2) and such that (Ac, Be, Cc) 
is minimal. 

It follows from Theorem 1 that by deriving necessary conditions for the Aux- 
iliary Minimization Problem we obtain sufficient conditions for characterizing 
dynamic output feedback controllers ensuring stabilization of closed-loop sys- 
tems with time delay. 

4 Fixed-Order Dynamic Compensation for Systems with 
Time Delay 

In this section we present the main theorem characterizing fixed-order dynamic 
controllers for (2.1), (2.2). Note that for design flexibility the compensator order 
nc may be less than the plant order n. We shall require for technical reasons 
that CdC T = a2V2, where the nonnegative scalar a is a design variable. The 
following lemma is required for the statement of main theorem. 

L e m m a  2 [24]. Let 0 , /5  be n × n nonnegative-definite matrices and suppose that 
rank 015 = no. Then there exist nc x n matrices G, F and an nc x nc invertibte 
matrix M,  unique except for a change of basis in ]R n° , such that 

0/5 = GTMF,  FG T = Inc. (4.1) 
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Furthermore, the n x n matrices r ~= GTF and r± ='x In - 7 are idempotent and 
have rank nc and n - no, respectively. 

For convenience in stating the main result of this section we define the no- 
tation S ~ (I + ~r-2a2QP) -1, for arbitrary n x n nonnegative-definite matrices 
Q,/5 and 

A~ ~= 

Ap ~= 

AQ ~= 

Ag 2 ~= 

Q[C + ~-2CdAT(p + p)]r, 
1 A+ -~eln, 

A~ - SQaV2-1(C + a-eCdAT p) + a-2 AdAT p, 

A~ +a-2AdAT(p  + P) -2 T -1 T T ^ -- ~ AdC~ V2 Q, S P, 

A~ - BR21BT p + c~-2 AdAT p, 

for arbitrary P,Q,P  e IR "x" and c~,e,a > 0. Note that since Q,P are non- 
negative definite and the eigenvalues of QP coincide with the eigenvalues of 
the nonnegative-definite matrix Q1/2pQ1/2 it follows that QP has nonnegative 
eigenvalues. Thus, the eigenvalues of I + a-2a2QP are all greater than one so 
that S exists. 

Assume ~, e, ~r > 0 and suppose there exist n x n nonnegative- T h e o r e m  3. 
definite matrices P, Q, P, and Q satisfying 

0 = ATp  + PA, + R1 + a2In + a-2PAdATp - PBR21BTp  

+rT pBR2-1BT pT±, (4.2) 
- 1  T T - 1  T T T 0 = A Q Q + Q A ~ + V 1 - S Q a V ~  QaS +7±SQaV 2 QaS r 2, (4.3) 

= -AdC~V~ QaS 0 ATp  + PAp + a-2p[a2SQaV~-IQTS T T - 1  T T 

--SQ~V~-ICdAT]p + a-2PAdATp + PBP~-tBT p 

-TT pBR2-1BT pT-±, (4.4) 
qf} v-lg-)TsT - I  T T T 0 = Ad~(~+O.A ~ +~..~a 2 ~a -T±SQ,V~ Q , S  r 2, (4.5) 

rank (~ = rank P = rank ~/5 = no, (4.6) 

and let Ac, Be, and Cc be given by 

A~ = F[A - SQ,V~ -1 (C + a-2CdATp) 
+(a-2AdA T - BILl 1BT)p]G T, 

= rSQaY  -1, 
Cc = -R2-1BT pG T. 

(4.7) 
(4.8) 
(4.9) 

Then 

p = [ P + P  - p G T  ] 
- G P  GPG T ' 
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satisfies (3.2), (Ac, Bc, Co) is an extremal of ,7(P, Ac, Be, Co), and (fl, fit) is 
detectable if and only if A is asymptotically stable. Furthermore, the feedback in- 
terconnection of the delay system (2.1), (2.2) and the flxed-order controller (2.3), 
(2.4) is asymptotically stable for all Td > O. Finally, the cost ,7(t 3, Ac, Be, Cc) is 
given by 

J(/3, Ae, Be, Co) = tr[(P +/5)1/1 +/3SQaV~ -1QTsT]. (4.10) 

Proof. The proof is constructive in nature. Specifically, first we obtain necessary 
conditions for the Auxiliary Minimization Problem and show by construction 
that these conditions serve as sufficient conditions for closed-loop stability. For 
details of a similar proof see [26]. o 

Next, we specialize Theorem 3 to the full-order case. Specifically, setting 
nc = n so that r = G = F = In and T± = 0 the last term in each of (4.2)-(4.5) 
is zero and (4.5) is superfluous. Hence, the following corollary is immediate. 

Corol lary  4. Let nc = n, assume a, 4, a > O, and suppose there exist n x n 
nonnegative-definite matrices P, Q, and/3 satisfying 

0 = A T p  + PA,  + R~ + a2In + a - 2 P A d A T p  - PBRa-IBTp,  (4.11) 

0 A Q Q + Q A ~ + V I  -1 T T = - S Q a V  2 Qa S , (4.12) 

0 = A T p  +/3Ap + a-2/3fa2SQaV2-1QTS T _AdC~iv2T -1Qa S T  T 

-SQaVC1CdAT]/3 + a-Z/3AdAT/3 + PBP~-IBTp, (4.13) 

and let Ac, Bc, and Cc be given by 

Ac = A -  SQaV~-I(c + ~-2CdATd p ) + (a-2AdA T -  BI~-IBT)p,  (4.14) 

Be = SQaV~ -I, (4.15) 

Cc = - R ; 1 B T  p. (4.16) 

Then 

- P  P , 

satisfies (3.2), (Ac, Bc, Cc) is an extremal of ff(/3, Ae, Bc, Cc), and (fi, R) is 
detectable if and only if.4 is asymptotically stable. Furthermore, the feedback in- 
terconnection of the delay system (2.1), (2.2) and the fixed-order controller (2.3), 
(2.4) is asymptotically stable for all Td > O. Finally, the cost J(/3, Ac, Be, Co) is 
given by 

J(/3,  Ac, Bc, Cc) = tr[(P +/3)V1 +/3SQaV21QTST]. (4.17) 
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5 F u l l - S t a t e  F e e d b a c k  C o n t r o l  f o r  N o n l i n e a r  S y s t e m s  

w i t h  T i m e  D e l a y  

In this section we introduce the full-state feedback control problem for nonlinear 
systems with delay. Specifically, given the dynamical system with nonlinear state 
delay 

it(t) = Ax(t)+ fd(x(t--rd))+ Bu(t), te[O, oo), Vd > 0 ,  

x(t) = ¢(t) ,  t e [--~d,0],X(0) = ¢(0) = X0, fd(0) = 0, (5.1) 

where x E IR ~, u E IR m, fd : IR + ~ lRn, and ¢ : IR + --4 IR n is a continuous 
vector valued function specifying the initial state of the system, determine a 
full-state feedback control law 

~(t) = Kx(t) ,  (5.2) 

such that the closed-loop system (5.1), (5.2) is asymptotically stable. 
Next, we show that if fd( ' ) in (5.1) satisfies Ilfd(X)ll2 < ?ltx]12, where x E IR n 

and 9' > 0, we can construct a full-state feedback control law (5.2) to stabilize 
the nonlinear time-delay system (5.1) independent of the delay amount rd. This 
result is an extension of the result in [27] where a stabilizing state feedback 
controller was obtained for purely linear time-delay systems. 

T h e o r e m h .  Let Ilfd(X)II2 < 71jxl12, where x e ]R n and 7 > O, and suppose 
there exists an n x n positive-definite matrix P such that 

0 = A T p  + P A  + a - 2 P  2 - 2 P B R 2 1 B T p  + R1, (5.3) 

where a > O, ~min(R1) > a2"Y 2, and R2 > 0 . Furthermore, let the feedback 
control gain K in (5.2) be given by 

K : - R 2 1 B T p .  (5.4) 

Then, for all Td > O, the closed-loop system (5.1), (5.2) is globally asymptotically 
stable with Lyapunov function 

V(x)  = x T p x  + a 2 fT(x(s)) fd(X(s))ds.  
Td 

(5.5) 

Proof. First note that since P is positive definite and .fd(X) = 0 for x = 0, it 
follows that the Lyapunov function candidate V(x)  given by (5.5) is positive 
definite. The corresponding Lyapunov derivative along the trajectories x(t),  t > 
0, of the closed-loop system (5.1), (5.2) is given by 

? ( x ( t ) )  = xT( t )Px( t )  + x T ( t ) e x ( t )  

+a -~ *d fT(x(s))]d(X(s))ds t ~ 0, (5.6) 
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or, using (5.1) and 

] -- fT(x(s))Id(X(s))ds 
dt ~d 

(5.6) becomes 

?(z(t)) 

= f T d ( X ( t ) ) f d ( x ( t ) )  

- -  rd))fd( (t - -  

xT (t)[AT p + PAlx( t)  + uT (t)BT px( t )  + xT ( t )PBu(t )  

+ f T  (x(t -- Td) )Px(t)  + xT (t)P fd(x( t  -- rd)) 

+a2 f T  (x(t) ) fd (x(t) ) 

- -a2 fT(x( t  -- Td))fd(x(t -- Td)), t _> O. ( 5 . 7 )  

Next, adding and subtracting a-2xT( t )p2x( t ) ,  t > 0, to and from (5.7) and 
grouping terms yields 

V(x(t))  = xT( t ) [ATp  + P A  + a-2p2]x( t )  + uT( t )BTpx ( t )  

+xT ( t )PBu(t)  - [a]d(x(t -- Td)) -- a - l  Px(t)] T 

• [O~fd(x(t -- "rd)) -- ot- lpx(t)]  

+a2fT(x( t ) ) fd(x( t ) ) ,  t > O. (5.8) 

Now using the control law u(t) = - R 2 1 B T p x ( t ) ,  t >_ O, in (5.8) yields 

~Z(x(t)) = xT( t ) [ATp  + P d  - P(2BRe-IB  T - a-2I )P]x( t )  

--[a fd(x( t  -- Td)) -- a - l  px(t)]T[a fd(x( t  -- rd)) -- a - l  Px(t)], 

+a2fT(x( t ) ) fd(x( t ) )  t >_ O. (5.9) 

Finally, using (5.3), it follows that  

f /(x(t))  = - x T ( t ) R l x ( t )  + a2]r(x(t))]d(X(t))  

--[a]d(Z(t -- 7d)) -- a - l  Px(t)]T[afd(X(t -- Td)) -- a - l  Px(t)] 

_< -[Amin(R1) - a272]ltx(t)H~ - [a/d(X(t -- rd) ) - -  a - l p x ( t ) ]  T 

• [afd(x(t  -- rd)) -- a-IPx( t ) ] ,  t > O. (5.10) 

Since Amin(R1) > a272 and x(t) ~ 0, t > 0, it follows that f ' (x(t))  < O, x(t) ~ 0, 
t _> 0, and hence V(.) is a Lyapunov function for the closed-loop system (5.1), 
(5.2). 

6 I l l u s t r a t i v e  N u m e r i c a l  E x a m p l e s  

In this section we provide two numerical examples to demonstrate the proposed 
Riccati equation approach for delay systems. For simplicity we consider the de- 
sign of full-order dynamic compensators and full-state feedback controllers. The 
design equations (4.11)-(4.13) were solved using a homotopy continuation algo- 
rithm. For details of a similar algorithm see [26]. 
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Example 1. Consider the second-order system 

[21( t ) ]  _._ [ 0 1 
[ ~2(t) - - t ] [  x~(t) --0.3 x2(t) I + [ 

[ 0"5 ] u(t), 
+ 0.2 

y(t) = [2.1 4][x2(t)xl(t)]+[6.0 

0.145 075][x1   
0.275 -0.2 x2 ( t -  Vd) 

[ xl(t - Td) ] 
5.o]  x2(t rd) ' 

with design data V1 = 0.01/2, V2 = 1, R1 = 0.5/2, R2 = 1, a = 25, and 
a = 1. Using Corollary 4 a full-order dynamic compensator was designed. To 
illustrate the closed-loop behavior of the system let x(0) = [ 0.4 -6  ]T and 

let ¢(t) = [ -384t + 0.4 - 4 8 0 t -  6 ]T for t e [--0.025,0]. Figure 1 provides a 
comparison of the free response of the controlled system states with an LQG 
controller and the controller designed using Corollary 4. 

Example 2. To illustrate the design of full state-feedback control for dynamic 
systems with nonlinear state delay consider 

xl(t_rd) ] 
u(t). 

x2(t) x2(t - ra) ~2(t) 0 1 J 

Furthermore, note that ][fdll2 = 0.7 + x 2 _< 7V~12 + x 2, for 7 > 0.7. Let 

7 = 0.75 and choose the design parameters R1 =/2 ,  R2 = 1, and a = 1.3. Using 
Theorem 5, we obtain, 

p=[9.17076.00394.9379 ' 6.0039] K=[-6 .0039~ -4.9379].  

To illustrate the closed-loop behavior of the system let x(0) = [ 3 1  ] T and let 

¢(t) = [ 100t + 3 -200t + 1 ]T for t E [--0.01,0]. Figure 2 provides a compari- 
son of the free response of the controlled system states with an LQR controller 
and the controller designed using Theorem 5. 

7 C o n c l u s i o n  

In this chapter we developed fixed-order dynamic output feedback controllers 
and full-state feedback controllers for linear and nonlinear continuous-time sys- 
tems with time delays, respectively. Specifically, for linear continuous-time sys- 
tems with state and measurement delay we presented sufficient conditions via 
fixed-order dynamic compensation. For nonlinear continuous-time systems with 
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nonlinear state delay a constructive procedure was used to obtain full-state feed- 
back stabilizing controllers. For both cases the controllers obtained were delay- 
independent. Two numerical examples were presented to illustrate the effective- 
ness of the proposed design approach. 

//'" 

. . .  _ . . . . . . . . . .  

To :s ~ 2S s Io Is 20 
T ime  (sec) T i m e  (sec) 

Fig. 1. Comparison of LQG and Corollary 4 Designs: Example 1 

ats ,~ 

2.s ~ 

o.s \ 

/ 

..o, \ I "  

/ 

l 
/ 

/ 

Fig. 2. Comparison of LQP~ and Theorem 5 Designs: Example 2 
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Abstract .  This chapter concerns the stability of delay systems with 
nonlinear, time-varying, disturbed parameters, of retarded or neutral 
types. Two aspects of the stability problems are developed: the basic 
one is related to the qualitative stability, with conditions dependent or 
independent on the delay. The other aspect concerns the quantitative 
stability, with several results concerning the estimation of the decreasing 
rates, the robustness of the convergence with regard to the parameters 
bounds, the positive invariance of constraints sets and the estimation of 
the stability domains with regard to initial conditions. As for the first 
aspect, both delay-dependent and independent results are given. All the 
results are obtained by means of a same comparison approach linked with 
vector Lyapunov functions; this tool appears rather simple and powerful 
for the study of nonlinear models. 

1 Introduction 

Engineering processes often involve both nonlinear and time-delay models : on 
one hand, the time-delay phenomenon appears as soon as material, energetic or 
information transport lags cannot be neglected, in particular when the speed 
of closed loop controlled systems is expected to increase. On the other hand, 
nonlinear phenomena have to be taken into account if the process operates in 
a wide range of conditions. Realistic models with discrete delays can be di- 
vided in two types : retarded delay systems, and neutral ones (this l as t  class 
involves a delayed derivative of the state, which can be obtained, for example, 
from local modelling of hyperbolic distributed parameter systems). Both cases 
correspond to functional differential equations (FDE) of differential-difference 
type: this means that,  compared to ordinary differential equations (ODE), they 
generally appear to be very complex, since they are of infinite dimension. 

Many studies have been devoted to the control of time-delay systems, and 
in particular to the basic question of their closed-loop stability properties. Even 
if the stability study of linear systems with a single constant delay now appears 
to be well achieved, it remains quite a difficult task for more complex (but of 
course more realistic) models: 
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- linear models with varying or non-commensurate delays, or with several 
tuning parameters, or with unstable memoryless feedback; 

- linear models with uncertain coefficients or input perturbations (Wang et al. 
[32], Su and Huang [26], Niculescu et al. [23], Li and de Souza [20]); 

- nonlinear models (Dambrine and Richard [2]-[3], Goubet et al. [9], Kol- 
manovskii [14]); 

- neutral models (Kolmanovskii and Nosov[16], Tchangani et al. [27], Kol- 
manovskii [15], Wchangani et al. [28]). 

The general stability criteria that gather these kinds of models are neither 
numerous nor easy-to-check. Moreover, to establish quantitative criteria is of 
practical importance: this means to complete the -yet not so simple- qualitative 
question to know" whether a given operating point (or a nominal trajectory) is 
stable or not, attractive or not, for a given model. 

This chapter aims to provide (and in an easy way if possible) workable quan- 
titative information that is needed for the validation of a closed-loop controller: 

a) robustness with regard to the parameters: what are the admissible bound- 
values of the time delays, or of the parameters of the model, that guarantee 
the stability ? 

b) stability domains with regard to the variables: what are the initial condi- 
tions (which, for delay systems, are functions) that will make the state con- 
verge towards the equilibrium? (this is necessary for providing the admissible 
changes of operating points, or for determining whether bounded additive 
perturbations on the state may destabilize the closed loop system); 

c) decreasing rate: what is the exponential rate of convergence? (this means, 
the velocity of the final controlled process); 

d) invariance: how to be sure that a trajectory will not go out of a predeter- 
mined domain of constraints? (on the state, corresponding to physical secu- 
rity, or on the control variables, corresponding to energy considerations). 

Only a few studies have considered several of these questions for time-delay 
systems: 

- in some of them (Tokumaru et al. [29], Dambrine and Richard [2]-[3], Ver- 
riest [31], Verriest and Ivanov [30], Lehman and Shujaee [19]), the stability 
conditions are independent on the delay value (for such "i.o.d." criteria, the 
point a is answered with an infinite bound for the delay): of course, proving 
this kind of robustness property is very interesting because the delay margin 
is infinite; but, in practice, it may turn out to be rather conservative for 
processes involving small delays with known bounds. 

- in other ones, the nominal model is linear, with possible uncertainties. Ni- 
culescu et al. [22]-[24], Su and Huang [26] corrected by Xu [33], and Wang 
et al. [32] developed delay-dependent criteria for points a and possibly c. In 
[4], the authors considered point d within the framework of the constrained 
stabilization of linear time-delay systems. Of course, the drawback of such 
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linearity hypothesis is its lack of realism, since the size of additive perturba- 
tions -point b- is supposed to have no importance. 

- others approaches concerned nonlinear or time-varying systems ([Kolmanov- 
skii [13], [14] for point a, with an approach of point b. Goubet-Bartholomdfis 
et al. [10] gave a first answer to points a, b, c for nonlinear time-varying 
delay systems, and Dambrine et al. [5] for point d. 

The results that are to be presented here are in prolongation of this last 
item, but of course also apply to linear models. They are based on a compari- 
son theorem and special vector Lyapunov functions: the stability (respectively 
asymptotic stability) of a system is proved if a linear system~ the construction 
of which is explained, is stable (respectively asymptotically stable). 

However, the results are directly workable, even without refering to the com- 
parison concept. In our opinion, this last point (simplicity), compared with the 
wideness of the possible applications (points a to d), constitutes the main con- 
tribution of the present work. 

If we omit section 2 which contains the notations, the remainder of the chap- 
ter is decomposed into three main sections: stability criteria for retarded systems 
(with conditions independent and dependent on the delay), and then for neutral 
systems. 

Sections 3 and 4 deal with retarded systems of the following form : 

~(t) = A(t ,  xt ,  d) x( t )  + B( t ,  xt ,  d) x ( t  - T(t))  . (1.1) 

Section 3 considers stability conditions independent of the delay, and section 4 
provides delay-dependent results. 

In section 5, the results are enlarged to systems of the neutral type: 

2( t )  = Ai t ,  xt ,  d) x( t )  + Bi t ,  xt ,  d) x ( t  - v( t ) )  + C(t ,  xt ,  d) icit - Ti t))  . (1.2) 

Throughout the presentation, the following assumptions hold: 

- the delay Tit), which depends on time only, has an upper limit Tin, which 
can be finite or infinite : 0 <_ ~'(t) _< ~'m ; the law 7(t)  may be known or not; 

- the matrices A(t ,  x t , d )  and B( t ,  x t , d )  are bounded for d E Sd as soon as xt 
is bounded; 

- T(t), A(.), and B(.) are such that the systems (1.1) or (1.2), for any contin- 
uous initial condition ~, admit an unique continuous solution for t > to. 

2 N o t a t i o n s  

- d E 8d, where Sd is the set of admissible disturbances; 
- x ( t )  E IPJ ~ is the value of the solution at time t, 

xt is the state function at time t : x t ( s )  = x( t  + s) for s e [-Tin,0]; 
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- Initial conditions are xo(s) = ~(s). 
- )~m(P): eigenvalue of the matrix P which has the minimum real part. 
- a(P) = max IAi(P)I, where Ai(P) denotes an eigenvalue of the matrix P.  

- The supremum supa<a_< ~ x(a) of a vector x is the vector constituted of 
the suprema of the different components supa<a<f~xi(a ). Ixt is the vector 
whose components are the absolute values of the components of x. The same 
remarks hold for matrices. 

- A vector (resp. a matrix) is said to be positive if all its entries are positive. 
- I1" II denotes a norm of ]R n or its induced matrix norm. #(.) is the associated 

matrix measure, defined by #(A) = limh~o+ (I]I + hA II - 1 ) / h .  
- g(:D) denotes the set of the continuous functions defined on [-rr,,O] with 

values in the set D. 
- gl([--T,O],lRn) denotes the set of the differentiable and bounded functions 

mapping from IT, O] into IR ~. 
- Vector and functional sets are defined by: 

I (v ,a)  

Z(v,~) 
IN(a) 
zN(a) 

= {z  e ll~ ~ : Ixl _< a v} ,  

= C(Z(v,a)) = { ~  e C ( ~ ) :  Iw(s)l ~< a v ,  Vs e [--rm,0]},  
= {x  e ~ n :  IIx II < a} ,  

= C(IN(a)) : {(p Z C(]Rn): II~(s)II -< a ,  Vs Z I--Tin,O]}" 

where v is a vector with positive components, and a is a positive constant. 
- the abbreviation (.) stands for (t, xt, d). 

3 Retarded-Type Systems: Stability Criteria Independent 
of Delay 

The stability study of a nonlinear FDE is not a trivial task. Lyapunov's second 
method and its extensions ([18] and [25]) are powerful theoretical tools to solve 
this problem. This is evidenced by the fact that the existence of a Lyapunov 
functional is not only sufficient but also necessary in order to prove the property 
of uniform asymptotic stability. But, in practice, confronted to a complex but 
realistic system, the efficiency of Lyapunov's theory is weakened by the difficulty 
of finding a suitable Lyapunov function or functional since there is no general 
algorithm of construction, even for linear systems: in this last case, it would need 
to solve coupled algebraic, ordinary and partial differential equations (see [17]). 

For many systems such a difficulty may be bypassed by analyzing the sys- 
tem via another one, called the comparison system, simpler to analyze and for 
which the properties of stability imply the same characteristics for the original 
one: this is the comparison approach. However, the application of this method 
usually leads to some conservative results due to the use of linear, time-invariant 
comparison systems (for instance [29]) obtained at the price of strong majora- 
tions. This drawback may be removed by using more general types of comparison 
systems, but then the problem of their stability analysis remains. 
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In this section, a method proposed in [2]-[3] by some of the authors is re- 
viewed. This method combines the advantages of being both simple and usefull: 
firstly, formulae are given in order to obtain the finest comparison system with 
respect to the structure of the initial system and this in an easy and system- 
atic way; secondly some qualitative stability criteria that are well-suited to the 
structure of the comparison system are provided. 

The conditions stated in the first part of this section are independent of the 
delay: that is, the value of the time delay has no influence on the validity of 
the condition. This may be a very interesting property for a controlled system, 
but it turns out to be also too restrictive for some applications and so, in order 
to remedy this problem, some enhancements will be presented in a following 
section. 

3.1 The  Compar i son  Approach 

Let us first define what we mean by a comparison system: 

Defini t ion I (comparison system).  A dynamic system (A) is said to be a 
Comparison System of a dynamic system (B) with regard to the property 7 ) 
(for example, stability of its zero solution), if the verification of property 7) for 
system (A) implies the same property for system (B). 

For instance, the first-order approximation of a nonlinear ordinary differential 
equation may be viewed as a comparison system with regard to the uniform 
asymptotic stability. 
Another type of comparison systems may be defined as follows: 
let V : IR n -~ lR~_ with k _< n be a continuous, positive function such that 
V ( x )  = 0 ¢~ x = O. Assume that, along the solutions of (1.1), the right-hand 
time derivative of y(t)  = V(x ( t ) )  satisfies the functional differential inequality 

D+y(t )  <_ ~ ( t ,  yt) • (3.1) 

Defini t ion 2 (overvaluing system).  The system 

= 7 ( t ,  (3.2) 

is an overvaluing system of (1.1) with respect to the function V if when the 
inequality 

Y(x(t)) < z(t) 

holds for t E [to - rm, to], then it holds also for any t >_ to. 

Using the assumptions done on V, it is very simple to prove that an overvalu- 
ing system is also a comparison system with regard to stability or asymptotic 
stability. Conditions on functional ~ for (3.2) to be an overvaluing system are 
called comparison principles. Note that traditionaly, what we call an overvaluing 
system is referred to as a comparison system. 
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3.2 C o m p a r i s o n  Pr inc ip les  

We consider below that in (3.1), the functional ~r belongs to one of the two 
following classes: 

~:(t, z~) = g ( z ( t ) ,  z ( t  - r(t)) ,  t), 
o r  

(3.3) 

(3.4) .T(t, zt) = g(z(t), sup z ( t -  )O,t), 
O<_~<_r,~ 

where g is a function defined on IRk x IRk x [to, oo[. 
The following comparison principle summarizes two results given by Tokumaru 
et al. in [29] and Dambrine in [1]. 

T h e o r e m  3. Assume that the function g satisfies the following conditions: 

I. g(x, yt , t)  <_ g(x ,y" , t ) ,  for any vectors x, yl, y ,  E IR k such that y' <_ y" 
(monotonicity in the second argument), 

1 2 then 2. if x 1 and x 2 are two vectors of IRk such that x 1 < x 2 and x i = x i ,  
the i-th component of g satisfies the relation: gi(x 1, y, t) < gi(x 2, y, t) for all 
y E IRk and t > to (quasi-monotonicity in the first argument), 

3. the solution of the differential equation 

~(t) : g(z(t), sup z ( t -  )~),t) + e 
o<_x<<_r,~ 

uniquely exists for any continuous initial function z(s), ( - rm < s < 0) and 
for any su~ciently small e > O. 

Then, (3.2) is an overvaluing system of (1.1). 

The application of this theorem to the case of 

Y(t ,  zt) = - C z ( t )  + D  sup z ( t - ) ~ )  
0<)~<rm 

yields to the following lemma. 

L e m m a 4  [29], Let C and D be k x k matrices with real elements and let y(t) 
be a solution of the differential inequality 

f l ( t ) < - C y ( t ) + D  sup y ( t - A ) ,  for t > t o  
0_<x<r,~ 

I f  D > O, if the off-diagonal elements of C are non positive, and if (C - D) is an 
M-matrix, then a solution y(t) of this inequality is upper-bounded by the solution 
z(t) of the differential equation 

~ ( t ) = - C z ( t ) + D  sup z ( t - A ) ,  for t > t o  
0<A<rm 

as soon as 0 < Yto (0) < Zto(O) for  --Tin < 0 < O. 
Moreover, if (C - D) is an irreducible M-matriz, then there exist a constant 
7 > 0 and a constant vector k > 0 such that y(t) < ke -'rt, for t > to. 
k and 7 are obtained in the following way : 
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- 7 is the positive real solution of the equation Am(P~) = 7, where P'r = 
C - De T M  • 

- k is a positive eigenvector of P~ associated with Am(PT), and such that 
Yto (s) <_ ke -Ts, Vs E [--Tin, 0]. 

Properties of M-matrices are recalled in the appendix to this chapter. For 
the sake of simplicity, we stated the previous results for systems with a single 
delay, but they may be extended to the case of several delays. For instance, the 
following lemma is a generalization of Lemma 4 to systems with two delays: 

L e m m a 5  (Genera l ized  Tokumaru ' s  l emma)  [11]. Let C, D1 and D2 be 
n x n matrices with real elements and let x(t) be a solution of the differential 
inequality 

ic(t) < - C x ( t )  + D1 sup x(t  - A) + D~ sup x(t  - A) for t > O . 

O<A<r, O<A<r2 

If  Dx > O, D2 > O, if  the off-diagonal elements of C are non positive, and if 
( C - D 1 - D 2 )  is an M-matrix, then a solution x(t) of this inequality is overvalued 
by the asymptotically stable solution z(t) of the differential equation 

2(t) = - C z ( t )  + D1 sup z ( t -  A) + D2 sup z(t  - A) for t >_ O, 
O<~k<rl O<A<r2 

as soon as 0 < x(O) < z(O) /or  - m a x ( n ,  r2) < 0 < 0. 
Moreover, if ( C - D 1 - D 2 )  is an irreducible M-matrix, then there exist a constant 
7 > 0 and a constant vector k > 0 such that x(t) < ke -'rt, for t >_ O. 
k and 7 are obtained in the following way : 

• 7 is the positive real solution of the equation Arn(A~) = 7, 
where A~ = C - Die ~T~ - D2e ~2 • 

• k is a positive eigenvector of A~ associated with the eigenvalue 7. 

3.3 A Systematic Construction of Comparison Systems 

The initial system (1.1) may be viewed as the interconnection of several subsys- 
tems and so (1.1) can be rewritten in the form: 

~,i(t) = A~i(t, xt, d) xi(t) + Bii(t, xt, d) xi( t  - r(t)) 

+ E (Aij (t, xt, d) x j (t) + Bij (t, xt, d) x j (t - T(t))), 
l<j<_r 

j#i 

where xi(t) E ]Rn', and xT (t) = [(xl )T (t), . . . , (xr)T (t)]. 
Note that this decomposition may be natural or introduced artificially for 

simplifying the analysis of the system. 

(3.5) 

i = 1 , . . . , r ,  
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Consider now the following vector function V(x) = [V1 (x l ) , . . . ,  Vr(xr)] T, 
where V~ is an usual norm of ]R n~ , for instance, it may be one of the following 
Hblder's norms: 

ni 
i 1 , v,(x~): 11 x' I11 : ~ l x ~  

j = l  
nl 

i (3.6) ~(x,) : II ~' I1~ = (Z: t ~j I~) 1/~, 
j = l  

i ~(~') = 11 ~' It~ = max l~jl  
1<i<n~ 

Then, according to [3], the right-hand derivative of V(x(t))  with respect to 
time taken along the trajectories of (1.1) satisfies the following inequality 

D+V(x( t ) )  <_ M( t ,  xt, d)V(x(t))  + N( t ,  xt, d )V(x( t  - T(t))), (3.7) 

where the matrices M(.) = {mij(.)} and g( . )  = {n~j(.)} are obtained from A(.) 
and B(.) by: 

mii(.) = #i(Aii(.)), f o r / =  1 , . . . , r ,  
mij(.)  = llAij(.)llij ,  for j  ~ i ,  i , j  = 1 , . . . , r ,  (3.8) 
ni~(.) = IlUi~(.)lli~, for i ,  j =  1 , . . . , r  . 

Recall that # i (X)  denotes the measure of the ni x ni matrix X associated 
with the norm V~ (see [6]), and 11Y Ilij represents the matrix norm of the 
ni × nj  matrix Y associated with the norms V~ and Vj, and defined by 
II r I1~ = .max ~ ( r  zJ). 

xJEIR i:Vj (xi)=l  

It is important to note that all the off-diagonal terms of M(.) and all the entries 
of N(.) are non-negative, which implies that the function V(x(t))  satisfies the 
assumptions of Theorem 3. So, the system 

~(t) = M(.)  z(t) + N(.)  z( t  - T(t)) (3.9) 

is a comparison system of (1.1) for the properties of stability, asymptotic stabil- 
ity, uniform asymptotic stability, etc. 
We want to emphasize that with a vector Lyapunov function composed of classi- 
cal norms (3.6), it is very simple to derive a comparison system from the entries 
of matrices A(.) and B(.). For instance, if V~ = Vj = [[. t]1, then the formulae 
(3.8) reduce to: 

mii ( . )  ~- m a x  
pEJi 

mij(.)  = max 
pEJi 

n i j  ( .)  = m a x  
PEJI 

~pp + ~ laqp(.)l], 
qEJ~,qy~p 

qEJj J 

Z: tb,,(.)l], 
qEJi J 
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where J~ (resp. Jj) are the set of the row indices (resp. column indices) of the 
block A~j, that is, Aij(.) = {apq(.)}pej, qeJj. 

3.4 Qualitative Criteria of  Stabi l i ty  

We assume in this part that it is possible to find for (1.1) a local comparison 
system of the form (3.9) associated with a vector function V. The term local 
means here that (3.9) is a comparison system as tong as x(t) belongs to a given 
domain T~ of ]R '~. 

The definition of stability in the sense of Lyapunov is just a mathematical 
notion: it expresses the fact that the solution does not move too far away from 
the equilibrium if the initial conditions belong to a given neighborhood. But, 
there is no condition on the size of this neighborhood. This is a weak point of 
the notion of stability because the diameter of this neighborhood gives an idea of 
the order of the size of the admissible perturbation or provides an estimate of the 
admissible changes of operating point. So, in order to complete this qualitative 
notions of stability, we define the stability domains, introduced for nonretarded 
systems by Grujid [7], and that extend the well-known notion of domain of 
attraction. 

Definition 6. The set Ds is the stability domain of the zero solution of (1.1) if: 

i) For any ~ > 0, the set ~)s(~) = {~ e g(1R '~) : Vt :> to, t lz(t; to,~)ll  < 6} is 
a neighborhood of 0 in g(lR n) (with the uniform convergence norm) 

ii) :/:)~ = U~>0Ds(~) 

The asymptotic stability domain of the zero solution of (1.1) is T)a~ = :D8 A Pa, 
where Da is the domain of attraction of the zero solution. 

A way of obtaining an estimate of the stability domain is given in the follow- 
ing theorem. 

Theorem 7, I f  there is an ~ > 0 and a r-vector u with positive components such 
that 

[M( t ,x ,y )  + g ( t , x , y ) ]  u < - e u ,  (3.10) 

for all t > to, and allx,  y in ~), 
then the zero solution of (1.1) is stable and the biggest set Zv (a ,u )  = {~ e 
C(T)) : V(~(s))  < a u , V s  e [-rm,0]} is a positively invariant set with respect 
to (1.1), and thus is an estimate of the stability domain of its zero solution. 
Moreover, if the matrix N(t ,  x, y) is bounded on [to, c¢) x D x D then the zero 
solution of (1.1) is asymptotically stable, and the biggest set I v ( a ,  u) contained 
in C(~)) is an estimate of the asymptotic stability domain of the zero solution of 
(1.1). 
I f  7D = ]R '~ then stability or asymptotic stability is global. 

The existence of such a vector u may be easily tested in many cases, some of 
them are given in the following corollaries. 
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Coro l l a ry  8. I f  the matrix M(.)  + N(.) is the opposite o /a  constant M-matrix, 
then there is a vector u satisfying (3.10). If  in addition the matrix M + N is 
irreducible, then its importance vector is a possible choice for u. 

Coro l l a ry  9. I f  the matrix M(.)  + N(.) is such that all non constant entries 
are located in the same row, and if there is an ~ > 0 such that the matrix 
M ( t , x , y )  + N ( t , x , y )  + e I  is the opposite of an M-matrix/or all t > to, and all 
x ,y  in D, then there is a vector u such that inequality (3.10) holds. 

C o r o n a r y  10. I/there are two matrices D(.) and Z such that 

a) D(.) is a diagonal matrix which elements are larger than a positive number 
5, and 

b) Z is the opposite o /a  constant M-matrix, 
c) M(.)  + Y( . )  = D(.) Z, 

then there is a vector u such that inequality (3.10) holds. 

Note that all the criteria proposed in this section have stated independent-of- 
delay conditions implying the stability of the matrix A(.) in an intuitive sense. 

4 Retarded-Type Systems: Stability Criteria Dependent 
on the Delay 

In the previous section, different criteria have been given in order to test the 
stability of nonlinear time-delay systems and to determine stability domains. 
The results which have been presented are independent of the maximum value 
Tm of the delay. So they can be applied to a wide class of delay systems, and 
give very robust conditions. 

However, it may be interesting to determine stability criteria that are more 
precise and that take into account the value of the delay. Indeed, it is often 
possible to determine upper bounds on the delays in a system, and if they turn 
out to be small, independent-of-delay conditions may appear to be conservative. 
Then, stability conditions that take into account the size of the delays lead to 
less restrictive conditions on the values of other parameters in the system. 

As in the previous section, the different results are obtained using a compar- 
ison lemma (Theorem 3), applied on a comparison principle whose coefficients 
depend on Tin, and whose maximum delay is 2rm. Qualitative results will be 
determined (stability conditions, Theorems 11 and 13), as well as quantitative 
ones (estimation of stability domain, Theorem 14). These results depend on rm. 
Moreover, they allow to deal with systems whose memoryless feedback is not 
stable, in contrast to the i.o.d, criteria. They therefore constitute an interest- 
ing enhancement to the previous section, and allow to take into account the 
stabilizing effects of some of the delayed feedbacks. 
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4.1 Stabi l i ty  Cr i ter ia  

As before, the system (1.1) is considered : 

&(t) = A(t, xt, d) x(t) + B(t, xt, d) x(t - r(t)) . 

The initial time to is set to 0, but the results hold for any initial times. 
Let us decompose the matrix B(.) into : B(.) = B'(.) + B"(.). 
Let :D be a domain of ~ n  containing a neighbourhood of the origin, and let 

us associate with the system (1.1) the following matrix : 

P~ = sup {(g(t, xt,d) + B'(t, xt,d))*} 
t>rm ,T),Sa 

+e 2ar'~ sup ITm sup ( tB'( t ,  xt,d) A ( t - a ,  xt_x,d)t 
t>rm ,'D,,Sa ( O<.~<rm k 

+ IB'( t ,~ , ,d)B(t  - a, ~,-~, d)l ~ + IB"(t,~t,d)l ~, 
) J 

and so 

Po = sup {(A(t, xt,d) + B'(t, xt,d))*} 
t > r.~ ,'l) ,Sa 

+ sup ~rm. sup {IB'(t, x t ,d)A(t-)~,xt-~,d)]  
t>r.. ,V,$~ ( 0<A<rm 

+ I B' (t, xt, d) B(t  - A, xt-A, d) l} + ]B"(t, xt, d) l}, 

where the suprema sup are calculated for t > Tin, for functions x with 
t~vrn(D~S4 

values in D, and for d in Sd. 

T h e o r e m l l  [10]. If Po is the opposite of an M-matrix on the domain 7? C_ ]R n, 
then the equilibrium 0 of the system (1.1) is asymptotically stable. 

Remarks: 

1. The entries of the matrix P0 depend on the maximum value rm of the delay. 
The stability criterion is thus a delay-dependent one. 

2. If B~(.) = 0, the criterion is delay-independent and corresponds to the delay- 
independent Corollary 8 given in the previous section. 

3. The efficiency of this theorem depends on the decomposition of the matrix 
B(.): B'(.) must be chosen such that sup (A(.) + B'(.))* is the oppo- 

t>r.,.,'D,Sa 
site of an M-matrix. Moreover, the criterion is all more likely to hold that 

sup (A(.) + B'(.))* has small off-diagonal elements compared to the 
t>r,~ ,D,,Sa 
absolute values of the diagonal ones, and that 

sup ( r . .  sup { ] B ' ( t , z , , d ) A ( t - a , x , - ~ , d ) l  
t>r.~,'D,,f;,t O<3,<rm 

+ IB'(t, z t ,d )B( t  - ,~,xt-~,,d)l} + LB"(t, xt, d)l} 
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is a small matrix. A compromise has thus to be found, which is not so diffi- 
cult in many cases. 
As mentionned above, Theorem 11 takes into account the fact that some 
delayed feedbacks can stabilize a system. Indeed, if B(.) has stabilizing el- 
ements (negative diagonal elements with large absolute values), B'(.) may 
be chosen such that sup (A(.) + B'(.))* is the opposite of an M-matrix 

t>_r,. ,'D ,S.j 
(even if A(.) is not a stable matrix). 

Using the same tools, an exponential rate of convergence may be determined, as 
well as scalar stability criteria : 

T h e o r e m  12 [10]. I f  the conditions of the previous Theorem 11 are satisfied 
and if  moreover Po is irreducible, then Ix(t)l < k.e -~t ]or t > rm, as soon as 
tx(8)I < k.e -~e, 8 6 [-rm, rm], where 7 is the real positive solution of the 
equation Am(-P-y) = 7 and k is an eigenvector (with positive components) of 
( -P~)  associated with 7, such that {x 6 IR'~,[xt < k.e T M  } C D. 

T h e o r e m  13 [8]. g for every t > Tin, 

sup ~llB"(t,x~,d)]l + Vm sup (llB'(t, xt ,d)  A ( t -  A, xt_x,d)l I 

+ IIS'(t, x t , d ) B ( t  - A, xt_~,d)ll) } + sup {l~(A(t, xt ,d)  + B'( t ,  x t ,d))}  < O, 
t:>_r.~ .D,Se 

then the equilibrium 0 o/ (1.1) is asymptotically stable. 

More information about these results and other theorems can be found in 
the papers referenced in this chapter, as well as in [8]. 

The following example shows that these results, because they take into ac- 
count the stabilizing effects of the delayed terms, enable the determination of a 
delayed static state feedback stabilizing an unstable nonlinear process. An other 
example will be given later, together with the determination of delay-dependent 
stability domains. 

Example :  Stabilization of an unstable open-loop process. 
Let us study the nonlinear unstable system described by 

ij(t) - al (.) ~l(t) = u(t), 

that is to be stabilized using a feedback regulator with a delay. 
The parameter al (.) varies between 1.5 and 2. It may depend on t, on the state 
or eventually on a disturbance parameter. The output y(t) is measured at the 
instant t, but its derivative is computed only after an unknown (or varying) time 
lag r(t), whose upper bound is rm. 

The problem is to obtain a relation betweefi kl and Tm that assures the 
stability of the closed-loop system. If the system is asymptotically stable, then 
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Z 
y(t)-al(.)y(t) --- u(t) 

[y(t) d delayed. [)'~"c(.)) 

Fig. 1. Description of the process 

limt-~+oo y( t )  = yC and yC is set to 0 during the stability study. 
The state equation for the closed-loop system is: 

~(t) = Mz  z( t)  + Nz z ( t  - r), 

with 

[0 1] [0 0] 
Mz-~  - 1  al(.) ' N z =  0 - k l  , y ( t ) = [ 1 0 ] z ( t ) .  

All delay-independent stability criteria are unable to lead to any conclusion. 

[ I  ~ ] , a n d a p p l y  Let us define the change of state variables: x = Pz ,  with P = 0 1 

the first delay-dependent stability criterion to the system that is obtained (for 
details, see [8] or [10]). The results providing stabilizing couples of parameters 
(kl, rm) are shown on Fig. 2. The stabilization of the process is proved possible 
if the delay is not too large. 

4.2 Stabi l i ty  Domains  

Let us now lead a "quantitative" study of the stability with delay dependence. 
We denote M = sup {(A(t ,  xt , . ) )*},  N = sup {tB(t ,  xt , . ) l} ,  and 

[o,~.,],v,sd [0,~,d,v,Sd 
m = sup {#(A(t, xt,.)}, b = sup {[[B(t,x~,.) H}. 

These suprema are this time calculated for 0 < t < Tin, x~ e g(/)), and when 
the perturbations take all their admissible values. 

T h e o r e m  14 (Stabil i ty domains)  [10]. Suppose Po is the opposite of an M- 
matrix, and let v be a positive vector such that Po v < O, and I(v,  1) C 7). 
An estimate of the stability domain can be found as follows: 
Case 1: r( t )  is constant and known (r(t)  = Tra). 
Let kl be a positive real vector of ]R '~ satisfying the following condition: 

( /o  ) e M$ kl + e - M S N k l , d S  <: v,t E [0;Tm]. 
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0.03 

0.02 

0.01 

0 

Fig. 2. Sufficient conditions of stabilization 

kl 

Then Z(ka, 1) is an estimate of the stability domain of the equilibrium. 
Case 2: T(t) ~ 7"m and a vector k2 > 0 such that (M + N) k2 <_ 0 can be found. 
Let ~ be a positive real such that ~ k2 <_ v. 
Then I ( a  k2, 1) is an estimate of the stability domain of the equilibrium. 
Case 3: cases 1 and ~ do not hold, and - m  > b. 
Let t3 be the unique positive solution of the equation : 

13+rn+13e zr" = 0  

and wl be the largest real positive number such that IN(Wle ~ " )  C I(v, 1). 
Then ZN (wle -or"~) is an estimate of the stability domain of the equilibrium. 
Case 4: cases 1 and 2 do not hold, and - m  <_ b. 
Let 6 be the unique positive solution of the equation : 

- m - be -6r° = O, 

where TO is the minimum possible value of the delay. 
Let co2 be the largest real positive number such that IN(W2e 6r") C I(v, 1). 
Then IN(w2e -6r"~ ) is an estimate of the stability domain of the equilibrium. 

R e m a r k s :  

1. The estimates of the stability domains depend on the supremum rm of the 
delay, and, in case 4, on the minimum to. 

2. If the inequality Po v < 0 is strict, i.e. Po v < 0, then the sets which are found 
with the above method are estimates of the asymptotic stability domain. 
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Example: 
Let us consider the following system: 

Jz(t) = A(t ,  d) x(t)  + U(t ,  x( t) ,  d) x( t  - r) ,  

z(t0 + 0) = V(0), 0 e [--~, 0], 

where 

A(t,d)= [ -2+al(t'd) 0 ] 
0 -l+a~(t,d) ' 

B(t,x(t),d) = [ -1 + ~lg(t, x2(t)) 0 ] 
e - 1 +  & ( t , d )  ' 

lal(t ,d)] < 1.6; I/~11 < 0.1; la2(t,d)l _ 0.05; ICh(t,d)[ _< 0.3; let < 1. 

Two cases are considered for the expression of g(t, x2(t)): 

• g(t, x2(t)) = cos(t). This example is the same as the one given in [20] and [23] 
if al(t,d) = Oil cos(t), a~(t, d) = a2 sin(t), fl2(t,d) = f12 cos(t), e = -1 .  In 
these last papers, the zero solution was proved to be asymptotically stable for 
any constant time-delay r < 0.1036 [23] and T < 0.2013 [20]. Using Theorem 
11, it is proved to be stable for any time-varying delay r(t)  < 0.276 (see [10] 
for calculations). 

• In the second case, the system is nonlinear with lg(t, x2(t)) t < Ix2(t)l. The 
asymptotic stability of this system will be studied and estimates of the sta- 
bility domains will be given. They depend on the value of the delay, which 
is considered constant and known for simplicity. 

Po--[-1.4+0.1¢+,(4.6+0.1¢)1 + r -1 .65 +0 2.35T ] with the following decom- 

position of the delayed matrix: 

[ -10 -10 ] , B"(t,x(t),d) = B(t,x(t),d)- B'(t,x(t),d). B'(t,x(t),d) 
, d  

Considering any value of T less than 0.304, there exists a domain 7?¢, where 
= 14-46¢ such that Pv < 0, v = [ 1 . 6 ~ 3 5 r ¢  ¢]T. Then Theorem 14 (case 

l + r  ~ 

1) allows for the estimation of the stability domain of the equilibrium point with 
respect to the delay, Fig. 3 gives these estimates. Of course, the real estimates are 
the sets of functions defined on [-rrn, 0] with values in the domains represented 
on Fig. 3. Two simulations for a delay r = 0.01 and for constant initial functions 
show that the estimation is not too conservative. 

The delay was considered constant, but the same kind of results can be ob- 
tained for a time-varying delay, using the case 3 of Theorem 14 (for an example, 
see [101). 
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Fig. 3. Estimations of the stability domain 

5 Generalization to Neutral Systems 

In this section the problem of stability analysis of nonlinear FDE systems of 
neutral type is considered. A systematic method is given in order to compute a 
comparison system which is of retarded type; then a simple criterion is proposed 
in the linear time-invariant case. 
The considered systems are now of the form: 

&(t) = A( t ,  x t ,  d) x( t )  + B( t ,  xt ,  d) x ( t  - T) + C ~(t  - r), t > to, (5.1) 

X,o(e)  = = w e [ - r , 0 ] ,  

where A(t ,  x t ,  d), B( t ,  x t ,  d) are n x n matrices defined and continuous on [to, c~) x 
C1([-% 0]; ]R n) for any admissible disturbances d, C is a constant n x n matrix 
and T is a scalar positive constant. 

This section consists of two main parts: the first part provides scalar and 
vector conditions for existence of a comparison system for (5.1) together with 
conditions that ensure stability of the zero solution of (5.1); in the second part, 
several examples illustrate the obtained results. 

5.1 A d d i t i o n a l  N o t a t i o n s  a n d  A s s u m p t i o n s  

In order to avoid the case where (5.1) reduces to a simpler retarded delay system, 
we assume C is non nilpotent, that is, C k ~ 0 for any integer k. 
In the following, we use the additional notations: 
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M(.)k = M ( t  - k% Xt-kr, d), 
V(x , )  is the continuous function mapping from [-% 0] into ]R r defined by: 
y(x~)(o) = y ( x ( t  + 0)), v0 e [-~,0].  

5.2 Main  Resul ts  

Scalar results  
This part provides a way of constructing a scalar overvaluing system and addi- 
tional conditions for this overvaluing system to be a comparison system of (5.1) 
with regard to stability. 

L e m m a  15 (construct ion of scalar overvaluing system) [28]. Suppose 
the following conditions hold 

a) lI C li < 1 
b) there exists a scalar positive bounded function ~1(.) such that 

oo 

E i I C H  k- l  [l(B(.) + CA(.))k [[ < ~(.) < oc, t >__ to, xt e ~2, d e Sd . 
k = l  

Then the system defined by 

~(t) = It(A(.)) z(t) + E [[ C I[ k- '  II (B(.) + Cd(.))k II z(t  - kr), (5.2) 
k = l  

is a local overvaluing system of (5.1) with respect to the scalar norm H" H and the 
set Y2. Moreover, if a) holds and A and B are constant matrices, then (5.2) is a 
global overvaluing system of (5.1) and ~1(.) can be computed as 71(. ) = ~ .  

The following corollary gives a way for symplifying the expression of over- 
valuing systems. 

Corol lary 16 [28]. Under conditions of lemma 15, any scalar system 

~(t) = ~(.) z(t) + ~ II c II~-lak(.)z(t - k~), (5.3) 
k = l  

such that a(.) >_ It(A(.)), and as(.) >_ I[ (B(.) + CA(.))k [[, for x, e $2; d e ,Sd 
is also a local overvaluing system of (5.1) with respect to scalar norm [[. tl and 
set ~ .  

T h e o r e m  17 (scalar stabili ty cri terion) [28]. Let us suppose that the hy- 
potheses a) and b) of Lemma 15 hold, and in addition 

c) sup It(A(.)) + ~7(.) _< 0 
t~_to,xt E ff2~dESd 

Then the zero solution of (5.1) is: 
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1. locally stable; 
2. locally asymptotically stable if the inequality in b) is strict; 
3. if, in addition J? = C, then stability (asymptotic stability) is global. 

In the linear time-invariant case the conditions of Theorem 17 reduce to a 
very simple criterion. This is given in the following corollary which is important 
because it can be a guide for investigating a suitable overvaluing system of (5.1). 

Coro l la ry  18 [28]. Suppose A and B are constant matrices then if II C I1< l 
and if #(A) + ~ < 0 (respectively < O) then the zero solution of (5.1) is 1-11 c tl - 
stable (resp. asymptotically stable). 

The following theorem summarizes the results presented in this part. 

T h e o r e m  19 (compar i son  principle)  [28]. Suppose the conditions a) and b) 
of Lemma 15 hold, then any scalar overvaluing system verifying conditions of 
Corollary 16 is a local comparison system of (5.1) with regard to stability (resp. 
asymptotic stability). 

Vector  R e s u l t s  
This part enlarges the scalar results to the vector case by considering a Vector 
Lyapunov Function (VLF). Having a vector overvaluing system may be useful for 
the study of some properties such as estimation of asymptotic stability domains 
and attractors. In addition, it appears to be a suitable tool for the analysis of 
polyhedral constrained control problems, as is shown in [4] and [5]. 

As in section 3, we consider vector function V which components are of the 
form (3.6). With respect to this function V, we associate with a n x n matrix A, 
the matrices F(A) and V(A) defined by: 

F(A) = {F(A)i j}  with F(A)ii = #(Aii) and F(A)ij = II for i ¢ j, 

V(A) = {V(A)ij} with V(A)ij = II A,~ lli~ • 

L e m m a 2 0  (cons t ruc t ion  of  vec tor  overvaluing sys t em)  [28]. Suppose 
the following conditions hold 

a) a(V(C)) < 1, 
b) there exists a matrix 11(.) with positive bounded coefficients such that 

oo 

Z V(c )k - IV( (B( ' )  + CA(.))k) < H(.), t > to, xt • 12, d • 8a . (5.4) 
k = l  

then the system 

~(t) = F(A(.)) z(t) + ~ V(C)k-IV((B(.)  + CA(.))k) z(t - kT), 
k----1 

t >_ to, Z o(O) = ¢(0), 0 • 

(5.5) 
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is a local overvaluing system of (5.1) with respect to VLF V and set g2. 
Moreover if  a) holds and A and B are constant matrices, then (5.5) is a global 
overvaluing system of (5.1) and II(.) can be expressed as: 

II(.) = (It - V (C) ) - IV (B  + CA) . 

Corol lary 21 [28]. If  the conditions of Lemma 20 hold, then any system 

~(t) = F* z(t) + E Y (V)k - lAk  z(t - kr)), z(t) e IR ~, t > to, (5.6) 
k = l  

Z,o(O) = ¢ ( e ) ,  e e 

such that F* >_ F(A(.)) and Ak >_ V((B(.) + CA(.))k), for t > to, xt e ~2, 
d E Sa, 
is also a local overvaluing system o] (5.1) with respect to VLF V and set gl. 

T h e o r e m  22 (vector stabil i ty cri ter ion) [28]. Let us consider that the hy- 
potheses a) and b) of Lemma 20 hold, and consider the two ]oUowing properties: 

c) there exists a positive constant vector u such that 

IF(A(.)) + H(.)]u _< 0, Vt >_ to, xt E $2, d e Su. 

d) the matrix F(A(.)) + H(.) is less or equal to the opposite of a constant M- 
matrix for all t > to, xt E $2 and d E Sd. 

Then, the zero solution of (5.1) is: 

1. locally stable if c) holds. 
2. locally asymptotically stable if d) holds. 

Remark :  Property d) implies property c). 

Corol lary 23 [28]. Suppose A and B are constant, then • a(V(C)) < 1 and if 
there exists a positive vectoru such that [ F ( A ) + ( I r - V ( C ) ) - I V ( B + C A ) ]  u ~_ 0 
(resp. F(A) + (It - V ( C ) ) - I V ( B  + CA) is the opposite of an M-matrix) then 
the zero solution of (5.1) is stable (respectively asymptotically stable). 

The following theorem is a summary of results given in this part. 

T h e o r e m  24 [28]. Under conditions a) and b) of Lemma ZO, any vector over- 
valuing system verifying conditions of corollary 21 is a local comparison system 
of (5.1) with regard to stability (resp. asymptotic stability) 

Remark :  Corollary 18 and 23 are important because very easy to apply ; Corol- 
lary 18 is a generalization of [21]. 
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5.3 E x a m p l e s  

E x a m p l e  1: Let us consider 

This example given in [34] was firstly considered in [12] ; the problem is to 
determine the values of parameter c that guarantee the stability of zero solu- 
tion of (5.7). In [34], applying complex Lyapunov function, it is shown that if 
-0 .9848 < c < 0.9837 then the zero solution of (5.7) is asymptotically stable. 
Applying our methods yields to the following results: 

1. scalar case 
with [[. ][ = [[. HI: stability condition: [c[ < 0.5, 
with [1" [[ = ][" [[oo: stability condition: [c[ < 0.6, 

2. vector case with V(x) = [Ix1 t, Ix21] T: stability condition Ici < 0.5 

These results are weaker than those in [34] but immediate to obtain; they 
are stronger than those given by [12] (0.25 < lct < 0.52 ). 

E x a m p l e  2: Consider the scalar system 

= - a x ( t )  - b x ( t  - + - t >__ o ,  (5.8) 

where a > 0, b, c, ~- > 0 are given constants, Icl < 1 
Applying Corollary 18 proves that, if - a  + ~ < 0, then the zero solution of 

(5.8) is asymptotically stable. 
This asymptotic  stability condition, in the particular case b = 0, is the same as 
one of those given in [15] by applying the so-called "two stages method".  

6 C o n c l u s i o n  

As we mentionned in the paper, the comparison method appears to give a simple 
and efficient way to answer many questions linked to stability: conditions on the 
parameters,  on the variables (initial conditions), and on the disturbances. 

Among the original contributions of this work on nonlinear delay systems, 
we can remark that: 

- Section 3 provides very simple conditions for i.o.d, stability (including sta- 
bility domains), together with a method that constitutes the keystone of the 
further results. 

- Section 4 allows to deal with systems with unstable or stable memoryless 
feedbacks, which means that stabilization by means of delayed feedback can 
be studied by this way. The provided criteria are delay-dependent, as well 
as the estimated stability domains or exponentional rates of convergence. 

- Section 5 allows to deal with the difficult neutral systems, using the same 
background. The obtained criteria turn out to be very simple when a linear 
comparison system can be defined (as at the end of Lemma 15). 



238 Quantitative Approach of Stabilization 

The results of this last section can now be generalized to delay-dependent con- 
ditions for neutral systems by using the decomposition procedure of section 4: 
this has not be done in this presentation, but is a straightforward development 
of the work. 

7 Appendix 

Definit ion of  an M-matrix  and properties: 
A matrix M is the opposite of an M-matrix if it is Hurwitz with non-negative 
off-diagonal elements. 
If M is the opposite of an M-matrix, then the following statements hold: 

- The real parts of the eigenvalues of M are negative. 
- M admits a real negative eigenvalue -Am(M) ,  called the importance eigen- 

value, such that for any eigenvalue Ai of M, Re(Ai) _< -Am(M) holds. There 
is a non-negative eigenvector k(M) associated with -Am(M),  so called im- 
portance vector. Moreover if M is irreducible then the components of k(M)  
are positive. 

- For any vector x _> 0, x ~t 0, there exists an index i such that  xi (Mx)i  < O. 
- M verifies the Kotelyanski conditions, i.e. its successive principal minors are 

sign-alternate. 
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Abstract .  This chapter considers the problem of output feedback sta- 
bilization of continuous time linear systems with a constant time-delay 
in the state. We develop a delay-dependent method for designing lin- 
ear dynamic output feedback controllers which ensure global uniform 
asymptotic stability for any time-delay not larger than a given bound. 
The proposed stabilization method, which is based on linear matrix in- 
equalities, is then extended to the case of uncertain polytopic systems. 
We also consider the problem of delay-dependent robust stabilization 
via output feedback for state delayed systems with norm-bounded pa- 
rameter uncertainty. In this situation, the solution is given in terms of 
a generalized eigenvalue problem. The developed stabilization methods 
can be implemented numerically very efficiently using existing convex 
and quasi-convex optimisation techniques. 

1 I n t r o d u c t i o n  

Time-delays are frequently encountered in many dynamic systems and very often 
are the source of instability and poor performance; see, e.g. [12]. The problems 
of stability analysis and stabilization of dynamic systems with delayed state are, 
therefore, of theoretical and practical importance and have attracted consider- 
able attention for several decades. Various techniques of stability and robust 
stability analysis have been proposed over the past few years, including delay- 
independent as well delay-dependent stability criteria; see, e.g. [2], [4], [6], [9], 
[10], [13], [15], [17]-[19] and the references therein. 

Recently, increasing attention has been devoted to the problems of stabiliza- 
tion and robust stabilization of linear state-delayed systems. For example, stabi- 
lization techniques which are independent of the size of the time-delay have been 
proposed in [3], [7], [8], [11], [16] and [19], whereas delay-dependent stabilization 
methods have been recently developed in [9], [10] and [15]. With exception of 
[3], [7] and [19], all these stabilization techniques are based on state feedback, 
and thus do not apply to situations where some of the state variables are not 
available for feedback. 

This chapter is concerned with the problem of delay-dependent output feed- 
back stabilization of linear systems with a constant time-delay in the state. Both 
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the cases of systems with, or without parametric uncertainty are treated and at- 
tention is focused on the design of stabilizing linear dynamic output feedback 
controllers which depend on the size of the time-delay. We first consider the 
stabilization problem for linear time-delay systems without parameter uncer- 
tainty. We obtain conditions which ensure the system isstabilizable via a linear 
dynamic output feedback controller for any time-delay not larger than a given 
bound. A procedure for constructing stabilizing controllers is also derived. The 
proposed method is based on the solution of linear matrix inequalities (LMIs). 
This approach is then extended to the problem of robust stabilization of un- 
certain polytopic systems with a delayed state, where the controller is required 
to guarantee global uniform asymptotic stability for any time-delay not larger 
than a given bound and for the whole set of admissible systems. We also con- 
sider the problem of robust stabilization of linear state delayed systems with 
norm-bounded parameter uncertainty in all the matrices of the system state 
equation. We develop a controller design technique which is given in terms of 
a generalized eigenvalue problem. The proposed stabilization methods have the 
advantage that can be implemented numerically very efficiently using recently 
developed interior-point algorithms for solving LMIs and generalized eigenvalue 
problems; see, e.g. [1] and [14]. 

No ta t ion .  The following notation will be used throughout this chapter. 
Re n denotes the n dimensional Euclidean space, Re n×m is the set of all n × m 
real matrices, diag{...} denotes a block-diagonal matrix and I[ " I[ refers to 
the induced matrix 2-norm. The notation X > 0 for X E p~n×n m e a n s  that the 
matrix X is symmetric and positive definite. 

2 P r o b l e m  F o r m u l a t i o n  a n d  P r e l i m i n a r i e s  

Consider the following linear time-delay system 

x(t)  = Ax( t )  + Adx( t  - r)  + Bu( t )  (2.1) 
x(t) = ¢(t), Vt e [ -r ,  0l (2.2) 
y(t) = Cx(t) (2.3) 

where x(t) C Re ~ is the state, u(t) E Re m is the control input, y(t) E Re p is the 
output, T > 0 is the time-delay of the system, ¢(.) is the initial condition, and 
A, Ad, B and C are real constant matrices of appropriate dimensions. 

In this chapter we investigate the problem of designing linear dynamic output 
feedback stabilizing controllers for the system (2.1)-(2.3). Attention is focused 
on the design of controllers which depend on the size of the time-delay. 

We shall adopt the following assumption for the system of (2.1)-(2.3). 
A s s u m p t i o n  1 (A + Ad, B) is stabiIizable and (A + Ad, C) is detectable. 
Note that Assumption 1, which is equivalent to the stabilizability via linear 

dynamic output feedback of the system (2.1)-(2.3) in the absence of time-delay, 
is a necessary condition for the existence of a stabilizing linear dynamic output 
feedback control law for the system (2ol)-(2.3). 
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We shall consider linear dynamic output feedback controllers for the system 
(2.1)-(2.3) as follows: 

~(t) = Ac~(t) + Bey(t) 

u(t) = C~f(t) + Dcy(t) 

(2.4) 

(2.5) 

where ~(t) E Re n, and Ac, Be, Cc and De are matrices of appropriate dimensions. 
The control problem we shall address is as follows. Find a controller of the 

form of (2.4)-(2.5) for the system (2.I)-(2.3) such that the resulting closed-loop 
system is globally uniformly asymptotically stable for any constant time-delay v 
not larger than a given positive scalar ~. 

We conclude this section by recalling two lemmas which will be used in the 
derivation of the main result in the next section. 

L e m m a  1. (see [9]) Consider the system &(t) = Ax(t) + Adx(t - r). Given 
a scalar ~ > O, this system is globally uniformly asymptotically stable for any 
constant time-delay 7" satisfying 0 < T < ~- if there exist a matrix X > 0 and a 
scalar fl > 0 solving the following LMI 

M X A  T X A  T 

A X  - ~ f l I  0 

A d Z  0 -# (1  - fl)I 

A T 0 0 

Ad 

0 
< 0  

0 

-5-I 

where ~ = 1/~ and 

M = X ( A  + Ad) T + (A + Ad)X. 

L e m m a 2 .  (see, e.g., [5]) Given matrices G = G T E Re mxm, Y E Re rxm and 
Z E Re sxm, then there exists a matrix O E Re rx` satisfying 

G + Y T o z  + z T o T y  < 0 

if and only if 

 GNy < o, X zGJVz < 0 

where A/'y and Afz are any matrices whose columns form bases of the null spaces 
of Y and Z, respectively. 

3 O u t p u t  F e e d b a c k  S t a b i l i z a t i o n  

Motivated by the LMI approach to 7~c¢ control proposed in [5], in the sequel we 
develop an LMI based method for solving the delay-dependent output feedback 
stabilization problem for the system (2.1)-(2.3). 
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T h e o r e m  3. Consider the system (2.1)-(2.3) satisfying Assumption i. Given a 
scalar ~ > O, this system is stabilizable via an output feedback controller (2.4)- 
(2.5) for any constant time-delay T satisfying 0 < "t" < ~, if there exist n × n 
symmetric positive definite matrices R, S and P, and a scalar j3 > 0 satisfying 
the following LlVlls: 

T 

A/'B2 Hs(S, P, ~) 

0 

Jr.2 < 0 (3.1) 

i HR(R, t3) < 0 
LO l I j  o I 

(3.2) 

[R,] 
I S  > 0  

where [ Afro 

spaces of [B T B T] and C, respectively, and 

(3.3) 

and Ale are any matrices whose columns form bases of the null 

SA T A + Ad 

-~/~I A 

A T - ~ p  

0 Ad 

0 0 

Hs(S,P,Z) = 

Qs 

AS 

A T -}- A T 

AdS 

AT 

SA T Ad 

0 0 

AT o 
-,~(1 - ~)x o 

0 - ~ I  

(3.4) 

QR A T A T RAg 

HR(R, fl) = A -~t~I 0 0 
Ad 0 - ~ ( 1 - f ~ ) I  0 

ATR 0 0 - ~ I  

(3.5) 

Qs = S(A + Ad) T + (A + Ad)S, 

QR = (A + Ad)T R -t- R(A + Ad), 

= I/~. 

(3.6) 

(3.7) 

(3.8) 
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Proof.  The proof technique is inspired by that used in [5] to prove Theorems 
4.2 and 4.3. The closed-loop system of (2.1)-(2.3) with the controller (2.4)-(2.5) 
can be described by the following state-space model 

~c(t) = Axo(t) + 2dxc(t  - 7) (3.9) 

where 

xc = [ x T ~T ]T .4 = fi + BOC, (3.10) 

O= [ AcCe DeBt]' (3.11) 

0] 0] 
0 0 ' 0 0 ' 

(3.12) 

o=[0 
I 0 ' C O  " 

(3.13) 

Applying Lemma 1 to the system (3.9), it follows that the controller (2.4)- 
(2.5) solves the stabilization problem for a given ~ > 0 if there exist a 2n x 2n 
matrix X > 0 and a scalar/5 > 0 such that 

Gx + YT~)Zx + zT  o T y  < 0 (3.14) 

where 

Qx x A  ~ x A f  Aa 

A X  -e/3I  0 0 
a x  = , A~x  o -a(1-/3)1 o , (3.15) 

Qx = x(Zi + lid) T + (A -4- -4d)X, (3.16) 

y = [/~T /~T 0 0 ] ,  (3.17) 

z x  = [ c x  o o 0 ] .  (3.18) 

By Lemma 2, the inequality (3.14) is equivalent to 

A/~y G x.N'v < O, .~z x G x A/'Z x < 0 (3.19) 

where 2¢'y and A/'Zx are any matrices whose columns form bases of the null 
spaces of Y and Zx,  respectively. 
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Note that by defining 

z a [ o  o o 0], 

we have 

where 

J x  = 

Hence, the columns of 

Z = Z x  J x  I 

X 0 0 0 

0 I 0 0 

0 0 I 0 

0 0 0 I 

.~z = JxXz, ,  

form a basis of the null space of Z. This implies that 

X~;x a X Xzx  : ~ x  J x a  x -  ~ Jx arzx = . ~  a x - ~ z  

where 

G x _ l  = 

Q x-~ A r /t~ x-~ /t~, 

Yt - ~ I  0 0 

£ ,  0 - ~ ( 1 -  8)I 0 
f i T x  -1 0 0 --6~I 

(3.20) 

(3.21) 

it results that M and N are non-singular matrices. Moreover, it can be easily 
established that given any non-singular matrices R > 0, S > 0 and N, there 
exist unique matrices M, U and V such that X > 0. Indeed, we have that 

M -= ( I - R S ) N  - T  U = N - I ( S R S - S ) N  - T  V = N T ( S - R - I ) - I N .  (3.23) 

M N  T = I - R S  

Qx-1 = (4 + A~)T X -1 + x - ' ( A  + 4,,). 

Hence, it follows that .A f~xGx)Jz  x < 0 is equivalent to A r T G x - , A [ z  < O. 

Next, we shall express the conditions A~yGxAfy  < 0 and AfTGx-, . lV'z  < 0 
in terms of the plant parameters. To this end, we shall partition X and X -1 as 

X = N T V ' M T U 

where R, S, M,  N,  U and V are n x n real matrices. Note that in view of (3.3) 
and considering that R, S, M and N satisfy 
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With the partition as in (3.22) and considering (3.12), Gx and Gx-1 of (3.15) 
and (3.21), respectively, can be rewritten as: 

e x  

Gll G12 Gt3 Gla 

aT~ Q~ o o 

GT3 0 Q2 0 

GT4 0 0 Q3 

(3.24) 

where 

(~X_ l --.~ 

811 812 G13 G14 
GT2 Q1 0 0 

8~ o Q~ o 

8T~ o o Q~ 

(3.25) 

e l l  - -  
[ [SAT 0] 

, G12 --  
NT(A + Ad) T 0 NTA T 0 

613  ---- 
[sA  o] [A,o] 

, G 1 4  = 
NTA~ 0 0 0 

[ ] [A o] QR MT(A + Aa) 012 = , 
811 = (A + Ad)TM 0 ' 0 0 

013= ATo 00]' 014= [ RAd 0]  
MT Ad 0 ' 

o1 o] o ]  
o - o Z I  o -a (1  - Z)I 

°3:[-- o] 
0 -~I  

and the matrices Qs and QR are as in (3.6) and (3.7), respectively. 
On the other hand, considering that 

y = [ ~ T  ~T 0 0] 
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and 

0 I i 0 I ! 0 0 ! 0 0 

B T 0 i .8 T 0 i 0 0 i 0 0 

o liooiooioo 
o o o ] =  

c o ! o o ! 0 o i o o  
it follows that A/y and A/z are of the form as below: 

ArBI 0 0 0 0 0 

0 ! 0 0 0 0 

#L  "o" "o" "o" 
0 - I  0 0 0 0 

J ~ y  w--~ , , ,  . . . . . .  o o  . . . .  

0 0 I 0 0 0 

0 0 0 I O 0 
. . . . . . . . . .  , . . . .  ° ° .  

0 0 0 0 I 0 

0 0 0 0 0 I 

and 

No 0 0 0 0 0 0 

0 0 0 0 0 0 0 
. . . .  ,, . . . . .  , . . . . .  , o , ,  

0 I 0 0 0 0 0 

0 0 I 0 0 0 0 
H Z  ~ . . . . . . . . . . . . . . . . . . . . .  

0 0 0 I 0 0 0 

0 0 0 0 I 0 0 
. . . . .  o . . . . .  . . . . . . . . . .  

0 0 0 0 0 I 0 

0 0 0 0 0 0 I 

(3.26) 

(3.27) 

where A/'B2 and He  are any matrices whose columns form bases of the null 

spaces of [B T B T] and C, respectively. 
By considering (3.24) and (3.26), it can be easily established that the condi- 

tion XTGx.N'y < 0 is equivalent to 

T 
H m  0 0 0  

HB2 0 0 0 

0 I 0 0 Hs 

0 0 I 0 

0 0 0 I 

]din 0 o 0 

N'B2 0 0 0 

0 I 0 0 

0 0 I 0 

0 0 0 I 

< 0 (3.2s) 
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where 

= 

Qs SA T (A + A~)N SA T Ad 

AS -~/3I AN 0 0 

NT(A + Ad) T NTA T -5"~I NTA T 0 

AdS 0 AdN -~(1  - fl)I 0 

AT 0 0 0 - ~ I  

Now, multiplying (3.28) on the left and on the right by H T and H, respectively, 
where 

H ~__- 

0 

0 

and introducing the new variable 

I 0 O 0  

O N - t O 0  

0 I 0  

0 O l  

P = 3(NNT) -1 > O, 

it follows that (3.28) is equivalent to (3.1). 
On the other hand, by considering (3.25) and (3.27) it can be easily shown 

that the condition Af~zGx-l.hfz < 0 is equivalent to the inequality of (3.2) which 
completes the proof. VVV 

In the case when the conditions of Theorem 3 are fulfilled, an output feedback 
controller that solves the stabilization problem can be easily obtained. Indeed, 
assuming that the LMIs (3.1)-(3.3) are satisfied for some (not necessarily unique) 
matrices R, S and P, and scalar ~, a stabilizing controller can be found as follows: 

1. Compute an n x n non-singular matrix N such that 

N N  T = ~3p-1; 

2. Find a matrix X > 0, which satisfies the inequality (3.14), by using (3.22) 
and (3.23), i.e. 

X =  NT N T ( S _  R_I)_I N ; 

3. Compute the controller matrices, Ac, Be, Cc and De, by solving the LMI 

°f(3"14) f°r O =  [ AcCc DeBCl'i'e" 

Gx + Y T o z x  + z T o T y  < 0 

where Gx, Y and Zx are as in (3.15)-(3.18). 
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Remark 1. Theorem 3 provides a delay-dependent sufficient condition for out- 
put feedback stabilization of linear time-delay systems in terms of the solvability 
of linear matrix inequalities. Observe that since this stabitizability condition in- 
cludes information on the size of the time-delay, in general, it is expected to be 
less conservative than the delay-independent result of [19], especially when the 
time-delay is small. The proposed stabilization method has also the advantage 
that it can be implemented numerically very efficiently by using interior point 
algorithms, which have been recently developed for solving LMIs; see, e.g. [1] and 
[1#. 

Remark2. It should be remarked that although Assumption 1 has not been ex- 
plicitly used in the proof of Theorem 3, it is necessary for the inequalities (3.1) 
and (3.2) to hold. Indeed, it can be easily verified that if (A + Acl, B) is not sta- 
bilizable, then there exists a vector v such that AfBlv E Ker(BT), fl/'B2v = 0 
and 

V* lQSX.iv >_ o 

where Ker(M) denotes the kernel of the matrix M and the superscript '*' stands 
for complex conjugate transpose. The above inequality implies that (3.1) cannot 
be satisfied. Similarly, if (A + Ad, C) is not detectable, there exists a vector w 
such that Afew e Ker(C) and w*Af~oQRAfcw :> O, which contradicts (3.2). 

Remark 3. The problem of finding the largest ~ which ensures output feedback 
stabilization using the method of Theorem 3 can be easily solved without the need 
of carrying out iterations for increasing ~. Indeed, the largest ~ can be computed 
by solving the following quasi-convex optimization problem in R, S , /3  and 0: 

minimize 

subject to R > 0 ,  S > 0 ,  P > 0 ,  /3>0, ~ > 0 ,  and (3.1)-(3.3). 

The largest value of r, namely ~*, is given by ~* = 1/0", where 0" is the 
optimal value of 0. Note that the above optimization problem has the form of a 
generalized eigenvalue problem, which is known to be solvable numerically very 
efficiently; see, e.g. [1] and [14]. 

4 R o b u s t  O u t p u t  F e e d b a c k  S t a b i l i z a t i o n  

In this section, we extend the output feedback stabilization method of Section 
3 to the case of linear state delayed systems with parameter uncertainty in the 
state equation. We shall consider uncertain polytopic systems as well as systems 
with norm-bounded uncertainty. 
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4.1 Poly topic  Unce r t a in  Case 
Consider uncertain linear polytopic systems described by 

&(t) = A(t)x(t) + Ad(t)x(t - T) + Bu(t) (4.1) 

x(t) = ¢(t), Vt e I-r ,0]  (4.2) 

y(t) = Cx(t) (4.3) 

where x(t) E Re ~ is the state, u(t) E Re m is the control input, y(t) E Re p is 
the output, r > 0 is the time-delay of the system, ¢(.) is the initial condition. 
A(t), Aa(t), B and C are real matrices of appropriate dimensions, with A(t) and 
Ad(t) being uncertain matrices satisfying 

[A(t) Ad(t)] e 12, Y t  > 0 (4.4) 

where I2 is a polytope with L vertices described by 

12 = [A A~] : [A A~] = Z ~' [A, A~,]; a~ _ 0, ~ a, = 1 . (4.5) 
i=1 i=1 

The system (4.1)-(4.3) is supposed to satisfy the following assumption. 
Assumpt ion  2 (Ai + Adi, B) is stabilizable and (Ai + Adi, C) is detectable 

for i =  l , . . . , L .  
Note that Assumption 2, which is equivalent to the quadratic stabilizability 

via linear dynamic output feedback of the system (4.1)-(4.3) in the absence of 
time-delay, is a necessary condition for the existence of a robust stabilizing linear 
dynamic output feedback control law for the system (4.1)-(4.3). 

We shall address the following robust stabilization problem: Given a scalar 
> O, find a controller of the form of (2.4)-(2.5) for the system (4.1)-(.{.3) such 

that the resulting closed-loop system is globally uniformly asymptotically stable 
for any constant time-delay r satisfying 0 < T < ~ and for all A(t) and Ad(t) 
satisfying (4.4)-(4.5). 

T h e o r e m 4 .  Consider the system (4.1)-(4.3) satisfying Assumption 2. Given a 
scalar ~ > O, this system is robustly stabilizable via an output feedback controller 
(2.4)-(2.5) for any constant time-delay T satisfying 0 < T < 7, if there exist n × n 
symmetric positive definite matrices R, S and P, and a scalar ~ > 0 satisfying 
the following LMIs: 

.I~B 1 T 

AfB~ 0 Hsi(S,P,t~) 

0 I 

.~fB1 
0 

~rB2 < 0, 

0 I 

i =  1 , . . . , L  (4.6) 

HRi(R,B) ....... < O, 
0 I 0 I 

i - -  1 , . . . ,L  (4.7) 



252 Output Feedback Stabilization 

where [ AfB2 AfB1 ] J and Ale 
J 

spaces of [B T B T] and C, respectively, and 

Hsi (S, P, #) = 

[R,] 
z s > 0 (4.8) 

are any matrices whose columns form bases o/ the null 

Qsi 
A~S 

SA T Ai + Adi 

- a f l I  Ai 

AT -#P 
0 Adi 

0 0 

AT + A~T 
AdiS 

&T 

SAdT Adi 

0 0 

Ad~ 0 

- - a ( l  -- # ) I  0 

0 --aI 

HRi(R,•) = 

QRi 

Ai 

Adi 
AdTi R 

A T A~ T RAgi 

-aSI o o 

o - a ( l - # ) z  o 

0 0 - e I  

P r o o f .  
1 , . . . ,  L, we obtain 

HB, 
NBz 

0 

Qsi = S(Ai + Adi) T -t- (Ai + Adi)S, 

QRi = (Ai + Adi)T R + R(Ai + Adi), 

# = 1/3. 

Multiplying (4.6) and (4.7) by the weight Ai and summing for i = 

T 

L 

i = l  

J•fB1 
Aft2 0 

I 

< 0 (4.9) 

)~,HR~(R, fl) < O. (4.10) 
0 I i=1 I 

With (4.9) and (4.10) and in view of (4.5), the result follows immediately from 
Theorem 3. V V V  

RemarkS. Theorem ~ establishes a delay-dependent condition for robust output 
feedback stabilization of uncertain polytopic systems with a delayed state. The 
proposed result is given in terms of the solution of linear matrix inequalities. 

We observe that the computation of a robust output feedback controller can 
be carried out using the same procedure of Section 3 for the controller design. 
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4.2 N o r m - B o u n d e d  Unce r t a in  Case 
In this subsection, as an extension to method of Section 3, we shall develop a 
delay-dependent robust output feedback stabilization method for linear time- 
delay systems with norm-bounded parameter uncertainty. We consider systems 
described by the differential delay equation 

ic(t) = [A + AA(t)]x(t) + [Ad + AAd(t)]x(t -- 7") + [B + AB(t)]u(t) (4.11) 

x(t) = ¢(t), Vt E [--T, 0] (4.12) 

y(t) = Cx(t) (4.13) 

where x(t) E Re n is the state, u(t) E Re m is the control input, y(t) E Re p is the 
output, T > 0 is the time-delay of the system, ¢(-) is the initial condition, A, Ad, 
B and C are known real constant matrices of appropriate dimensions which 
describe the nominal system of (4.11)-(4.13), and An(.) ,  And(.) and AB(.) 
are unknown real norm-bounded matrix functions which represent time-varying 
parameter uncertainties. The admissible uncertainties are assumed to be of the 
form 

[AA(t) AB(t)] = DF(t)[E~ Eb], AAd(t) = DdFd(t)Ed (4.14) 

where F(t) E Re i×j and Fd(t) E Re ia ×j~ are unknown real time-varying matrices 
with Lebesgue measurable elements satisfying 

IIF(t)ll < 1; IIFa(t)ll < 1, Vt (4.15) 

and D, Dd, Ea, Eb and Ed are known real constant matrices which characterize 
how the uncertain parameters in F(t) and Fd(t) enter the nominal matrices A, 
Ad and B. 

The robust stabilization problem to be investigated in this subsection is as 
follows. Given a scalar ~ > O, find a controller of the form of (2.3)-(2.5) for 
the system (.4.11)-(4.13) such that the resulting closed-loop system is globally 
uniformly asymptotically stable for any constant time-delay 7- satisfying 0 < 7- < 

and for all admissible uncertainties AA(t),  AAd(t) and AB(t) .  
In order to derive a solution to the robust output feedback stabilization 

problem, the following delay-dependent robust stability result will be needed. 

L e m m a S .  Consider the system (4.11)-(4.12) with u(t) = O. Given a calar 
> 0, this system is robustly stable for any constant time-delay T satisfying 

0 < T < ~ and for all admissible uncertainties AA(t) and AAd(t) if there exist 
a matrix X > 0 and scalars ai > 0, i = 1 , . . . ,  5, solving the following LMI: 

Q(X) Xt~l T L T ( a l , X )  1Q 1 

Mx 0 o 

I L(al, X) 0 - a l I  0 

o o 

< o (4.16) 
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where # = 1/~ and 

Q(X) = X ( A  + Ad) T + (A + Ad)X 

L T ( a l , X )  = [ a l D  alDd X E  T 

.~T= [AT ~ A~ ~] 

~=[A~ D~] 

U1 = diag {a2I - a3DD T, asI,  

~]2 = diag {I--asETd Eu, asI}. 

x~]  

Output Feedback Stabilization 

(1 - a2)I - a4DaD T, a4I) 

P r o o f .  The result follows immediately from Theorem 3.1 of [9]. 
V V V  

Hence, we have the following robust output feedback stabilization result. 

T h e o r e m  6. Consider the system (~.11)-(~.13) satisfying Assumption 1. Given 
a scalar ~ > O, this system is robustly stabilizable via an output feedback con- 
troller (2.~)-(2.5) for any constant time-delay r satisfying 0 <_ r <_ ~, if there 
exist n x n symmetric positive definite matrices R, S and P, and scalars ai > O, 
i = 1 , . . . ,  5, satisfying the following inequalities: 

,,;,]<o 
Q8 

T [z~S 

& 

sPT ~ P~ 
-~, & o 

o ~ -~  

of T ........ 

• -#J1 0 0 

[ E a t O - a 3 # I O  
~ o o -~ 

No o]< ° 
0 I 

(4.18) 

[R,] 
I S  > 0  (4.19) 

where ~fs and Arc are any matrices whose columns form bases of the null spaces 
of [B T B T E~ E T] and C, respectively, Qs and Qn are as in (3.6) and 
(3.7), respectively, # = 1/~ and 

F [ =  [A T E T E [ ]  

F2= A +  Ad 
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FT= [SA T SE T aiD CqDd SE T A d  Dd] 

_~T= [A T E T 0 0 Ed T 0 0] 

~,T= [A T E T alRD alRDa E T E T RAa RDd] 

261 =diag{~J1,  a3~I, alI} 

2bz=diag{~J2, a4OI, alI, alI, alI, #J3, asOI} 

I'3 =diag{OJ2, a4OI, alI, alI,  alI, a1I, a J3, as#I} 

dl = a 2 I  - ot3DD T 

J3 = I - ~ E [  E~. 

Proof .  The proof is along the same lines as that of Theorem 3, except that 
Lemma 5 is used in lieu of Lemma 1. Similarly to the proof of Theorem 3, 
the closed-loop system of (4.11)-(4.13) with the controller (2.4)-(2.5) can be 
described by 

~c(t) = [A + bf(t)Ea]xc(t) + [Aa + Ddfa(t)Ed]Xc(t -- r) (4.20) 

where 

o=[°] xc = ~ , 0 ' ' 

~ o = ~ , ~ + ~ b o C ,  Eo=[Eo 0], ~ b = [ 0  Eb], & = [ E ~  01 

and A, Ad, C and O are as in (3.10)-(3.13). 
By Lemma 5, the closed-loop system (4.20) is robustly stable for any constant 

time-delay T satisfying 0 _< r < ~ if there exist a matrix X > 0 and scalars 
ai > 0, i = 1 , . . . ,  5, satisfying the following inequality 

Gx + ~'TO2x + zToT~ " < 0 

where 

~-= [ ~  ~ E[ 0 o o 0 ~[ 

2 x = [ C x  o o o o o o o o 

o o o ]  

o o] 

(~ (X)  X ] ~  T LT(otl, X) 2~ T 

~ X  -~U1 0 0 

L(al, X) 0 - a l t  0 

19 0 0 --~]2 

(4.2i) 
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Q,(X) : X ( A  ..~ Ad) T + (A -Jr Ad)X  

/~T ~. [Ad ]0d] 

01 = diag {~2I - a3DD T, 

Output Feedback Stabilization 

(1 - a2)I - ~4DdDy, O~41} ~3 I, 

asI} .  

The result can then be obtained after lengthly manipulations using similar ar- 
guments as in the proof of Theorem 3 and defining P = a2(NNT) -1. VVV 

Remark5. Theorem 6 provides a delay-dependent condition for robust out- 
put feedback stabilization of linear uncertain time-delay systems. Note that the 
inequalities (4.17)-(~.19) can be solved numerically very efficiently by using 
interior-point algorithms for generalized eigenvalue problems; see, e.g. [1]. 

The computation of a robust output feedback controller can be carried out 
using a procedure similar to that of Section 3 for the controller design. More 
specifically, when the LMIs (4.17)-(4.19) are satisfied for some matrices R, S 
and P,  and scalars ai, i = 1 , . . . ,  5, an output feedback controller that solves the 
robust stabilization problem can be obtained as follows: 

1. Compute an n x n non-singular matrix N such that 

N N  T = a2p-1; 

2. Find a matrix X > 0, which satisfies the inequality (4.21), by using (3.22) 
and (3.23), i.e. 

X =  NT N T ( S _  R_I)_I N , 

3. Compute the controller matrices, Ac, Be, Ce and De, by solving the LMI 

of (4.21) for O =  Cc D~ " 

5 An Example  

Consider the linear time-delay system 

o o x(t) + x ( t -  r) + u(t) 
2 ( t ) =  0 1 0 - 1  1 (5.1) 

y(t)= [ 1 1]x(t) .  



Time-delay Systems 257 

We observe that the above system with T = 0 is not asymptotically stable. 
It should be noted that the delay-independent output feedback stabilization 

methods of [3], [7] and [19] cannot be applied to system (5.1) as the pair (A, B) 
is not stabilizable. On the other hand, applying Theorem 3 to system (5.1), it 
was found using the software package MATLAB-LM] Lab that this system is 
stabilizable via linear dynamic output feedback for any constant time-delay 7 
satisfying 0 < T < 0.2650. Moreover, a stabilizing output feedback controller is 
given by 

~(t) = Ace(t) + Bey(t) 
u(t) = cc~(t) + Dcy(t) 

where 

[ A c t  Bc ] -40.6723 -110.2708 10.1577 
= -20.8760 -60.7428 5.4553 

Cc Dc 4.3109 -12.7778 -0.6107 

We emphasize that smaller controller gain could be obtained by reducing the 
maximum allowed time-delay. 

6 Conclusions 

This chapter focused on the design of output feedback controllers for continuous 
time linear systems with a delayed state. Both the cases of systems without, 
or with parameter uncertainty have been treated. Polytopic and norm-bounded 
uncertainties have been considered. Delay-dependent sufficient conditions for sta- 
bilization and robust stabilization via linear dynamic output feedback have been 
obtained and the design of such controllers have been discussed. The proposed 
stabilization approach as well as the robust stabilization method for uncertain 
polytopic systems are based on linear matrix inequalities, whereas the robust 
stabilization method for norm-bounded uncertainties involves the solution of a 
generalized eigenvalue problem. 

References  

1. S. Boyd, L. E1 Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities 
in Systems and Control Theory, Studies in Applied Mathematics, Vol. 15, SIAM, 
Philadelphia, 1994. 

2. S.D. Briefly, J.N. Chiasson, E.B. Lee and S.H. Zak, "On stability independent of 
delay for linear systems," IEEE Trans. Automat. Control, AC-27, 252-254, 1982. 

3. H.H. Choi and M.J. Chung, "Observer-based 7-/~ controller design for state delayed 
linear systems," Automatica, 32, 1073-1075, 1996. 

4. C.E. de Souza and X. Li, "Delay-dependent stability of linear time-delay systems: 
an LMI approach," Proc. 3rd IEEE Mediterranean Symposium on New Directions 
in Control and Automation, Limassol, Cyprus, July 1995. 



258 Output Feedback Stabilization 

5. P. Gahinet and P. Apkarian, "A linear matrix inequality approach to 7~o~ control," 
Int. J. of Robust and Nonlinear Control, 4, 421-448, 1994. 

6. J. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 
1977. 

7. E.T. Jeung, D.C. Oh, J.H. Kim and H.B. Park, "Robust controller design for 
uncertain systems with time delays: LMI approach," Automatica, 32, 1229-1231, 
1996. 

8. J.H. Lee, S.W. Kim and W.H. Kwon, "Memoryless ~oo controllers for state delayed 
systems," IEEE Trans. Automat. Control, AC-39, 159-162, 1994. 

9. X. Li and C.E. de Souza, "LMI approach to delay-dependent robust stability and 
stabilization of uncertain linear delay systems," Proc. 34th IEEE Conf. on Decision 
and Control, New Orleans, LA, Dec. 1995. 

10. X. Li and C.E. de Souza, "Robust stabilization and Ho~ control for uncertain linear 
time-delay systems," Proe. 13th IFAC World Congress, San Francisco, CA, June 
1996. 

11. M.S. Mahmoud and N.F. Al-Muthairi, "Quadratic stabilization of continuous-time 
systems with state-delay and norm-bounded time-varying uncertainties," IEEE 
Trans. Automat. Control, AC-39~ 2135-2139, 1994. 

12. M. Malek-Zavarei and M. Jamshidi, Time Delay Systems: Analysis, Optimization 
and Applications, North-Holland, 1987. 

13. T. Mori, and H. Kokame, "Stability of ~(t) = Ax(t) + Bx(t  - r)," IEEE Trans. 
Automat. Control, AC-34, 460-462, 1989. 

14. Yu. Nesterov and A. Nemirovsky, Interior Point Polynomial Methods in Convex 
Programmin9~ Studies in Applied Mathematics, Vol. 13, SIAM~ Philadelphia, 1994. 

15. S.I. Niculescu, C.E. de Souza, J.M. Dion and L. Dugard, "Robust stability and 
stabilization of uncertain linear systems with state delay: Single delay case," Proc. 
IFAC Syrup. Robust Contrvl Design, Rio de Janeiro, Brazil, Sept. 1994. 

16. J.C. Shen, B.-S. Chen and F.-C. Kung, "Memoryless stabilization of uncertain dy- 
namic delay systems: Riccati equation approach," IEEE Trans. Automat. Control, 
AC-36, 638-6401 1991. 

17. J.-H. Su, "Further results on the robust stability of linear systems with a single 
time delay," Systems ~ Control Lefts., 23, 375-379, 1994. 

18. T.J. Su and C.G. Huang, "Robust stability of delay dependence for linear uncertain 
systems," IEEE Trans. Automat. Control, AC-37, 1656-1659, 1992. 

19. L. Xie and C.E. de Souza~ "Output feedback control of uncertain time-delay sys- 
tems," Proc. 1993 European Control Conf., GrSningen, The Netherlands, July 
1993. 



Robust Control of Systems with A Single Input 
Lag 

Gilead Tadmor 

ECE Department, Northeastern University 
Boston, MA 02115, USA 

e-maih tadmor~cdsp.neu.edu 

A b s t r a c t .  A state space design methodology is developed for various 
H~  problems and gap optimization in systems with a single input lag. 
The main contribution is in converting associated operator Riccati equa- 
tion and abstract model compensator realizations to algebraic and dif- 
ferential matrix Riccati equations of a fixed order and finite dimensional, 
integro-differential realizations. 

1 I n t r o d u c t i o n .  

This chapter presents a state space solution method for certain H ~  and gap 
robustness optimization problems, in systems with a single, pure input lag at 
the control port. Systems with a single input lag form what is probably the 
simplest and yet one of most frequently encountered class of distributed param- 
eter models. Examples of the use of such models include those systems where 
the presence of delay is justified by a physical phenomenon (such as in process 
control systems), systems where an input delay is used as a simplified represen- 
tation of more complex phenomena (such as point to point wave propagation), 
or systems where a delay provides a conceptually simple, approximation-over-a- 
band of a phase-lag due to high order components. The vast use of this class of 
systems motivates the search for effective, tailored-to-measure design methods 
that make full advantage of its relative simplicity. 

Hc¢ optimization in the general context of distributed parameter systems, 
as well as in the framework of delay systems, has been investigated by several 
authors. A few examples are results based on state space analysis [34, 25], the 
skew Toeplitz approach [17] and direct reduction to a commutant lifting / oper- 
ator interpolation type results [8, 7, 13, 21, 22, 35]. The problem of robustness 
optimization in the gap metric has been long established to be equivalent to an 
H ~  problem [9] and its variant in a system with a single input lag has already 
been treated in [6, 16, 14]. 

State space solutions of H ~  and gap optimization problems in ordinary sys- 
tems are well established since the late 1980's [1, 5, 9], and have been extended 
early on to distributed parameter systems (see e.g. in [26, 34] and references 
therein). Typical to the distributed parameter case is the difficulty to solve asso- 
ciated infinite dimensional operator Riccati equations. [15] addressed this chal- 
lenge - in the context of systems with a single input or output lag - by viewing 

259 
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the problem as constrained by an essentially periodic system (with the delay as 
its period); using a "lifting" technique the problem is transferred to an equiva- 
lent setting in terms of a distributed input and output, LTI discrete time system 
over a finite dimensional state space. This technique, and the resulting generic 
solution, are akin to what has been previously done in sampled data H ~  and 
//2 control (compare, e.g. with [24]). The solution is based on algebraic matrix 
Riccati equations that arise in an allied LTI problem and a differential matrix 
Riccati equation that stems from I/O norm evaluation of a certain (continuous 
time) system over the delay interval. A marked disadvantage of this solution is 
that the periodic structure is reflected in the generic compensator, which turns 
out to be periodic, time varying, even when the original system is LTI. 

In this chapter we suggest a way to overcome this difficulty by a combination 
of a direct appeal to continuous time, abstract evolution models over the state 
space M2 = ]Rn x L2[-1,0], and a two steps, finite dimensional analysis of an 
associated differential game. Our method is based, jointly, on the observation 
that the solution of the operator Riccati equation (that arises from the abstract 
model formulation) is the kernel of the M2 quadratic form for the game's optimal 
value, in terms of initial data, and on our capacity to reduce the game and 
solve it in a finite dimensional setting. The resulting compensators are all of 
the usual "two loop" form, where the "central compensator" is based on an 
integro-differential equation of a neutral type. 

This chapter presents the statements of the main results in several generic 
H ~  and gap optimization problems, and reviews the proof for the case of the 
one block problem; the main ideas, jointly used in all variant problems, will be 
presented in that proof. The current presentation builds on our work in [28, 29, 
30, 31, 27], where complete arguments can be found, for all the results mentioned. 
We shall also limit our reference list to a minimum, and exclude important 
references to significant, both recent and earlier work on solutions to optimal 
and robust control problems in distributed parameter systems. More references 
and leads are provided in the author's cited papers. 

2 A B a s i c  A b s t r a c t  M o d e l  

This section presents some basic features of M2 models for systems with a pure 
control delay, as captured in a representative example. The principles of such 
models and their general forms are welt known and the purpose of this section 
is mainly to serve as a brief review. For a background on semigroups and ab- 
stract model representations of distributed parameter systems, in general, one 
may consult [3, 4, 18]. Examples of Hilbert state space representations and LQ 
optimization in general linear delay systems are [10, 11, 19]. Directly relevant 
details and more related references are provided in [30, 31, 34]. 

As an example of the type of systems that this work addresses, consider now 
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the standard system form 

~(t) = Ax(t)  + Blw( t )  + B ~ u ( t - 1 )  

z(t) = Clx(t)  + DllW(t)  + D 1 2 u ( t - 1 )  (2.1) 

y(t) = c : ( t )  + D21w(t) 

with x E ]R n, the exogenous input w E IR ml , control u E ]R m2 , controlled output 
z E ]l=t h and observation y E lR 12. By standard nomenclature, the relevant control 
history is denoted ut(') (where ut(O) = u(t + 8), 0 E [-1, 0]) and is embedded in 
L2[-1, 0]. A complete state of the system must account for both the Euclidean 
x(t) E ]R n and for ut E L2[-1,0]. 

The following abstract model will be shown to provide a realization of the 
I /O mapping in (2.1). 

] = A + BlW + B2u 

z = Cl f  -I- D l lw  (2.2) 

y = C2f + ~21w 

with the state f = ( f o ,  f l )  E M2 and with the following coefficients - 

BlW = (BlW, 0), •2u = (0,~o(')u) 

Cl f  = C l f  ° + D12fl(-1), C2f = C2f  ° (2.3) 

.Af = (Af ° + B2f1(-1), d f l~ ds  ] 

Here 50 is Dirac's function, centered at zero) and A is defined over the dense 
domain 

{ } D(.A) = f e M2 : f l ( s )  = ¢(r)dr, e e L 2  (2.4) 

The following analysis is a summary of some basic facts, relating (2.1) and (2.2). 
The main results of this chapter use this and several other associations of abstract 
models with delay systems or systems with neutral FDE realizations. 

L e m m a  1. Let S(t)  be the family of linear operators over M2, as defined by 
the homogeneous dynamics in (2.1) and the relation (x(t), ut) = S(t)(x(O), uo). 
Then S( t )  is a Co - semigroup over M2 with A as its infinitesimal generator. 

Results similar to Lemma 1 can be found in the literature cited above con- 
cerning the use of M2 models in the treatment" of LQ optimization in delay 
systems, and we shall be content with a review of some main points in the 
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proof. For more details and justifications of other such associations, the reader 
is referred to [30, 31, 27, 32] and references therein. 
Out l ine  of  the  proof.  The fact that S(t) is a Co - semigroup (that is, that 
S(t)S(r)  = S( t  + r) and that S(t)  is strongly continuous in t [4]) stems from the 
basic properties of solution operators in ODEs. 

To motivate the stated form of the generator of S, one may evaluate the time 
derivative of (x(t), ut(s)) where it exists. Complete proofs can be obtained, e.g. 
by adaptations of either the proofs of [4] Theorem 2.4.6, [2] Theorem 2.3, or of 
[32] Theorems A and B. Guidelines for the adaptation of proofs from [2] and [32] 
will now follow. 

It is first noted that, both here and in later instances, one can write the un- 
derlying homogeneous, integro-differential delay equation in the standard form 
of a neutral FDE - 

d -~$zt = ~zt, t > 0 (2.5) 

where z = (x, u) and in terms of bounded linear operators g and 5 v 
: W~([-1,O],]R n+m2) ~ lR n+m2. Precisely, in the case of S(t)  we have £zt = 
zt(O) and JZ(xt,ut) = (Axt(O) + B2ut(-1)  , 0). 

In the framework of the cited papers this would have called for the use of 
the higher dimensional "M2" state space ]R n+m2 x L2([-1, 0], IRa+m2), with the 
complete state (gzt, zt). The simplification in the current lower dimensional set- 
ting is due to the following specific features: (a) The dependence of both £zt 
and .T'zt on the component xt of zt is restricted to x(t) = xt (0). Particularly, the 
vector formed by the first n entries of g(xt ,ut)  is x(t). This allows to replace 
the component xt in the complete state by x(t), without losing necessary infor- 
mation. (b) The last m2 entries of .Tzt vanish, making the subspace of (gzt, zt) 
where the last m entries of $(xt, ut) are zero, an invariant subspace under (2.5). 
Focusing on that subspace, the last rn entries of $(xt,  ut) can be removed from 
the state, ending with the current choice of (z(t), ut). [] 

The analysis leading to the results in this chapter utilizes several other M2 
semigroups. When relating to such semigroups we shall be content with provid- 
ing, without proof, the forms of their generators and their respective domains. 
In each of these cases one will be able to draw on arguments from [2, 32] to 
verify the association of the semigroup and the generator in a manner similar to 
the proof outline, above. 

For later reference we write down the details form of the relationship f ( t )  = 
S(t)f(O), as defined by anexplicit solution of (2.1) - 

f°( t)  = e A t f O ( O )  -}- fO min(t'l) eA(t-s)B2f ~(O)(s - 1)ds 

fl(t ,O) 
f /l(O,t+O) - 1 < o  < - t ,  

0 else 

0 < t < 1 (2.6) 

It is a standard observation that a restriction of  $(t) to the dense subspace 
79(A) C M2 defines a co - semigroup over Z)(A), relative to the stronger graph(A) 
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topology. Also, the definition of S(t) extends, by dense injection, to a co - semi- 
group over the larger space T)(Ar) ~ ~ M2. Such extensions and restrictions are 
used extensively (cf. the more general discussions in [20, 19]). The definition of 
the restriction to Z)(A) is obvious. The following details concern the adjoint semi- 
group and the of S(t) to I)(A') ' .  The adjoint Hilbert space M~ will be identified 
with M2, throughout. 

L e m m a  2. The adjoint semigroup g(t) = S(t)'g(O) is define via - -  

g°(t) = eA'tgO(O), 

g l ( t ,  s) = / g l (0 ,  s - t), 

( B~eA'(t-s-1)gO(O), 

The infinitesimal generator of S(t) t is - -  

A'g = (A' g °, - ~ s g  1) 

over the domain 

s e (t - 1,0],  t e [0,1] 

else 

(2.7) 

(2.s)  

7)(A') = {g e M2 : gl e W~[-1,0] and g l ( -1)  = B~g °} (2.9) 

Proof :  The expressions (2.7) readily follow from the expression (2.6), for S(t), 
and the definition of the adjoint operator via (S(t) f ,  g)M2 = (f,  S(t)'g)M2. 

The domain I)(A') is characterized by the fact that g E 7D(A') and h = A' g 
means that Vf e Z)(A), (Mr, g)M2 = (f, h)M2. Indeed, for f E 79(A) we can write 
f l ( s )  = - f :  d f l ( r ) d r .  On the one hand, for such selections and any g e M2, 
one has - 

(.Af, g)M2 = ((Af ° + B2f1(-l) , ~f1(s)), g)M2 
(2.1o) 

= ((fo, r i l l ( s ) )  ' (A,gO,_B2gO + gt(S)))M ~ 

On the other hand, if also g e Z)(A') and h = A'g, the expression (2.10) must 
be equal to - 

(Mf, g)M2 A' = (:,  g)M2 

= ( ( f0 ,_  f :  ~ f l ( r ) d r )  ' h)M2 (2.11) 

: ((fo, ~f'(s)), (h o, - Jo" h~(r)dr))~ 

Comparing the right hand sides of (2.10) and (2.11), both the stated forms of 
A' and of / ) (A')  follow. 

We have just seen that an element g E Z)(A ~) can be identified with the pair 
(gO, rig1) E M2. A norm on 7)(A') that is consistent with the graph topology 
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of `4', is Ilgllv(A') = II(g °, dgl)llM2. The adjoint space T)(`4')' can therefore be 
identify with pairs (h °, h 1) E M2, v i a - -  

d 1 
(h, g)~)(A'),,z)(A') = (( h°, h i ) ,  (gO, ~sg ))M2 (2.12) 

Associated with that representation is the norm Ilhll~(A,), = H(h °, hl)HM2. 
We shall maintain these representations and introduce the continuous injec- 

tion ~ : M2 ~ I)(,4')' and its (unbounded, left) inverse r : 7:)(`4')' ~-~ M2, as 
follows - 

z(f) = (fo + B2 f °  l f l ( r )dr  , f :  f l (r)dr)  
(2.13) 

~(h) = (h ° -  B2hl ( -1)  d h1~ 

Integration by parts provides the following equality, holding for all f E M2 and 
g e 1)(`49 

d 1 
(f,g)M2 = (~(f) ,  (gO, .~sg ))M:, (2.14) 

which justifies (2.13). The (unbounded) adjoint mapping ~d defines the embed- 
ding of 1)(`4') with the Me structure as explained earlier; its bounded left inverse 
is z'. Explicitly - 

~ ,(¢) = (¢o ,  ~¢:) 
(2.15) 

~,(¢) = (¢0 , B~¢o + f s l  ¢l(r)dr)  

The definition of the semigroup S(t) over the entire 1)(At) t is made by contin- 
uous extension of z o $( t )o  lr from the dense submanifold z(M2). Its infinitesimal 
generator will be denoted A e . The following lemma provides their precise forms. 

L e m m a 3 .  Let I)(`4')' be embedded with the M2 structure, as explained above. 
For h(O) E 7)(,4')' let h(t) = S(t)h(O) be the trajectory of the extended semigroup. 
Then - 

h°(t) = eAth°(O) - fo min(tJ) eA( t - r )AB2hl (O,r -  1)dr, 

hl( t ,s)  
f h 1 (0, t + s), s E [ -  1, - t ) ,  

0 else 

t e [0, 1], (2.16) 

The generator of the extended semigroup, `4~, is defined over the domain - 

via - 

1 ) ( x )  = {h : h 1 e W~[-1,0] ,  hi(0) = 0} = ~(M~) (2.17) 

A~h = (A(h ° - B2hl ( -1) )  , ~s hi) (2.18) 

In particular, A e is continuous over ~(I~I2) relative to the M2 topology. (Also 
noted is the equality A~h --- ~ o A o ~h for h E ~(1)(A)).) 



Time-delay Systems 265 

Proof i  We compute h(t) = 3(t)h(O) for h(0) = ~(f(0)) in the dense submanifold 
~(M2) C 7)(A')'. By definition of the extended semigroup, this means that h(t) = 
z(f(t)) for ]( t)  = S(t)](O). Using the explicit expressions for the injection, in 
(2.13), this first implies - 

h 1 (t, s) = J :  f l  (t, r)dr = fs max(s'-t) f l  (0, t + r)dr 

= J°min(t+s'°)fl(O'r)dr-: ( hl(O't+S)'o s e [-1,-t),else t e [0,1], 

(2.19) 
The expression (2.6) provides the explicit value of f l ( t ) (s )  in f ( t )  = S(t)f(0). 
We use that expression, the definition (2.13), the definition of the extended 
semigroup and integration by parts, to obtain - 

h°(t) = f°( t )  + B2h l ( t , - 1 )  

eArl(O) + f0 min(t'l) eA(t-~) B2]l  (O, r -- 1)dr 

B 0 + 2 fmin(t-l,0) f l (O,r)  dr 
(2.20) 

= eAth° - f o  in(t'l) eA(t-r)AB2h 1 (0, r - 1)dr 

which completes the proof of (2.16). 
The expression just derived for the extension of ,S(t) to 7)(.4')' are very 

similar to the expressions (2.6) for ,q(t) over its original domain. That analogy 
must therefore carry in the form of the infinitesimal generator ̀ 4e of the extended 
semigroup, and of its domain, c~ 

The definitions of the input coefficients operators in (2.1) and their adjoints 
adapt to the state space extension from M2 to 7)(A')', as follows. The bounded 
operator B1 : ]R rnl ~+ M2 extends to a bounded operator : ]R ;T~I 1--~ 7)( .AI)  I 

via z o Blw = (Blw,  0). The adjoint operator is B~f = B~f  °, f E M2, and its 
restriction (via z') to/)(`4') is B~g = B~g °, g e 7)(`4'). 

The operator B2 takes values in/)(,4') ' .  We shall now derive an expression 
for B2, based on the representation of/)(`4') by members of/142, as explained 
earlier: fix u E ]R m2 and g E 7)(A'); then - 

(2.21) 
--  (U , Bt2g O + fO  1 d g l { 8 ~  e 
- as ~ j, = ((B2u, l(s)u) , (gO, agl (s ) ) )M ~ 

where l(s) is the unit-valued constant funetion. The adjoint operator is B~g = 
o 1(o), o e 7)(`4'). 

The state equation in (2.2) should be understood in the context of the ex- 
tended state space. The validity of (2.2) as an abstract model realization of the 
inhomogeneous dynamics of (2.1) wilt now be established. 
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L e m m a 4 .  Fix initial data f(0) = (x(0),u0) 6 M2 and inputs u ,w  6 
L2 ~oc[0, oc). Let x(t) be the state trajectory in (2.1) that corresponds to these 
initial data and inputs and denote f ( t )  = (x(t), ut). Finally, let h(0) = z(f(0)). 
Then the following mild evolution of (2.2) - 

h(t) = S(t)h(O) + S i t  - r) (Blw(r)  + B2u(r)) dr (2.22) 

is such that h(t) = ~(f(t)) and Cih(t) = C J ( t )  = G x ( t ) ,  t >_ O. If, moreover, 
u e W.~ toe[-1, ec), then for any g e D(A') there holds - 

d (h(t),g)~(A,),,z~(.4) = (Aeh(t)  + Blw(t)  + B2u(t) , g)v(.4,),,~(A) (2.23) 

for a.e. t >_ O, 

P r o o f :  The variations of parameters formula represents effects of initial data~ 
the exogenous input w and the control input u. Each will now be analyzed 
separately. 

From the original definition of S(t) and the relation S(t) o z = z o S(t)  in the 
extended semigroup, the validity of the component of (2.22) that involves initial 
data, is verified. 

By (2 .16) -  

S ( t -  r )Blw(r)  --- (eA(t-r)Blw(r)  , O) E M2 

Thus the claim concerning effects of w is also true. 
To analyze control effects set h(0) = 0 and w = 0 and denote x(t ,  r) = 

S( t  - r)B2u(r),  so that 

h(t)  = x( t ,  r )dr  

In what follows we use the equalities B2u = (B2u, l (s)u) (for the ~D(A')' value 
of B2u) and (2.16). The L2[-1,0] component of g(t, r) i s -  

f u(r),  t - r + s ,  s E [-1,0]  
x ( t , r ) l ( s )  

0 else 

Thus - 

f hl ( t , s )  = - -  u(r)dr = ut(r)dr, 
Jm ax(t+s,o) ax(s,-t} 

in agreement with the L~[- t ,  0] component of z(f( t)) .  
The ]R '~ component of x(t,  r) is - 

x ( t , r ) °  = - f 2  

(2.24) 

_- { B2u(r), 

eA(t-r- l )B2u(r) ,  

r e [max(0, t -  1 ) ,  t] 

t > l ,  r e [0 , t -  1) 
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Therefore - 
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h°(t) = f:ax(O,t-1) eA(t_r_l)B2u(r)dr + B2 f:ax(O,t-1) u(r)dr 

= f:in(1,t) eA(t-r)B2u( r -- 1)dr 

B 0 + 2 fmax(-1,-t)ut(r)dr = x(t) + B2h l ( t , -1 )  

(2.25) 

Here too we observe the asserted agreement with the definition of z(f(t)). We 
have thus established that h(t) = ~(x(t), ut) in (2.22). 

It remains to establish (2.23). Indeed, fix g E D(A'), an initial value x(0) 
and inputs w E L2 toc[O, ~ )  and u e W~ loci-l,  c¢) in (2.1) and denote f ( t )  = 
(x(t), ut) and h(t) = z(f(t)). Then - 

d (h(t), g)Z~(A')',Z)(A') = ~t (f(t) ,  g)M2 

d + fOl(u( t + s),ol(s)) ds) = ~  

= (Ax(t) + Blw( t )  + B2u(t - 1),g°)e + f ° l ( ~ u ( t  + s),gl(s))~ds 

= (Ax(t) + B1w(t),g°)e + (u(t),gl(O))e - f ° l (u ( t  "t- s), dgl(S))edS 

= (A~(z( t ) ,  ut) + t3~w(t) + B:u( t ) ,  g)v(~,),,v(~,) 
(2.26) 

where the first equality is due to (2.14) and the equality h(t) = z(f(t)); the 
second equality merely writes the previous term explicitly; the third equality is 
obtained by invoking the state equation in (2.1) and the assumed differentiability 
of u; the fourth equality is the result of integration by parts, using the fact that 
gl E W~[-1,0] and that g l ( -1)  = B~g ° for 9 e D(A'); the fifth equality builds 
on the previously computed expression for ¢4 e and the definitions of B~. This 
completes the proof, o 

The output operator C2 is bounded over M2, but its extension to 7:)(A')' is 
not. The output operator C2 is already unbounded over M2, and only its restric- 
tion to lR n x W~[-1, 0] (and certainly, to 7)(,4)) is bounded. Using the previous 
lemma, however, it is noticed that when the initial state and the inputs to (2.1) 
and (2.2) coincide then the outputs of the two systems coincide as well. Thus 
when the input and output trajectories are embedded with the L2 loc[-1,oc) 
topology, the mapping (f(0), w, u) ~ (z, y) is continuous. 

In closing it is notice that, while other variants may fall into the framework 
of the Pritchard-Salamon class ([19]), the model (2.2) does not. 
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3 A O n e  B l o c k  P r o b l e m  
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Let P = [A, B, C, D] be a minimal realization of a rational P E Lo~(flR). The 
following is standard. Let 

IR n = Gt x V~8 

be a direct sum partition of ]R n into a stable and an anti-stable eigenspaces. Let 
Xa8 and Ya8 be the positive definite controllability and observabitity Grammians 
of the respective restrictions of [A, B] and [A, C] to Vas, and define the n x n, 
positive semidefinite matrices 

0 X[~ and Q =  0 yGl  

A left co-prime factorization P = M~-INt is then provided by 

Nl = [A - QCC', B - QC'D, C, D] and Ml = [A - QC'C, - Q C ' ,  C, I] 

Several optimization problems, such as the weighted sensitivity minimization, 
involving plants with a pure input lag, can be shown to reduce to a model 
matching form, defined in terms of an allied system "P" and its factorization, 
as follows 

inf{HNt(s ) - Mt(s)e-SO(s)[lc~ : 0 e Hoo} (3.1) 

The optimal value of (3.1) is denoted 7o and for 7 > 70, the suboptimal set is 
denoted O r -- {O E Hoo : i10[[oo < 7}- To avoid issues of well posedness, we 
restrict our attention to transfer functions of system with atomic neutral FDE 
realizations [32]. (This does not affect 7o1) 

The following definitions are used in the statement of our first result. The 
first is Po -- max {p(XasYas),p(D'D)} (where "p(M)" is the spectral radius). 
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The rest of these definitions are made for 72 > Po, as follows 

Za s ~ Y~sl  1 - ~ X a ~ ,  

__ [o,, o] 
0 Z2)  ' 

E22 = - ( 7 2 1 -  D'D)-I  D ', 

E12 = - ' 7 ( 7 2 1 -  DD')-½, 

! 1 
E21 = ( 7 2 I - D D ) - ~ ,  

! 1 
H1 = 7 ( 7 2 1 -  D D ) - ~ C ,  

//2 = (721 - D'D)-ID'C,  

G1 = ( B - Q C ' D ) ( 7 2 - D ' D ) - ½  

G2 = (72QC ' -  B D ' ) ( 7 2 I -  DD') -1 

In these terms we have 

T h e o r e m  5. 7 > 70 ¢=~ 

P~o + Ro(A - G2C) + (A - G2C)'Ro 

+ RoG1G'I Ro + H~ H1 = O, 

Set 7 > 7o. Then the I /O mappings for (9 6 (97 ¢~ 
of the following forms 

(a) 72 > po and (b) 3Ro (t) > 0 E Lo~[O, 1] such that 
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are defined by realization 

where Oo is selected subject to the restriction that it is defined as the I /O mapping 
in a stable, neutral FDE and satisfies the norm constraint lleott~ < 1, and 
where the coe~cients are as follows: ~(t, s) is the transition generated by Ao = 

(3.3) 

~c(t) = Aozc(t) + B~lw(t) + B~2u(t-1)  

u(t) = C~iXc(t) + Dcl2¢(t) + Dc13ut 

¢(t)  = Cc2xc(t) + Dc21w(t) + Dc23ut, 

n o ( l )  = n 

(3.2) 

¢ = 0o¢ 
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A - G2C + GIG~Ro.; in these terms 

Ac = A - QC'C, 

Be1 = B - QC'D, 

Bc~ = QC', 

Ccl = ( C ( I - Q R ) + ~ D B ' R ~ q ~ o ( 1 ,  O), 
/ 

t _ 1  Dcl2 = (2E12E12) 2, 

C~2 = -G~Ro(O)-  1 , ~D HI, 

Dc21 = E211,  

r i £(r) = fo ~o(r,s)G1Gl~o(r,s)'ds, 

O c l 3 U t  : 

Dc22U t = 

Robust Control of Input Lag Systems 

1 DB, ,~  ro 4~0(1,s + 1). (C(I - QR) + ~ ~J 3-1 

• ((I  + ~ ( s  + 1)Ro(s + 1)G2 + ~(s  + 1)H~E12)ut(s)ds, 

-¼D'E12u( t -  1) 

-G~ f_° 1 ~o(S + 1,0)'(Ro(s + 1)G2 + H~E12)ut(s)ds 

It is easy to see that  the "central solution" - the one with (9o = 0 - is 
defined by an integro-differential equation that adheres to the general pattern 
of a neutral FDE [32]. 

4 Gap Optimization 

This section concerns robustness optimization in the gap metric of the standard 
negative feedback loop of Fig. 1, in systems with a single input lag. (A recent 
solution from a different perspective is [6] and ideas similar to ours were explored 
in [14].) We shall thus consider a plant P(s )  = P0 ( s ) e  - s  where P0 ( s )  is rational 
and, for simplicity, strictly proper, with a minimal realization P 0  = [A, B, C, 0]. 
It has been established [9] that this problem is equivalent to a search for stabi- 
lizing compensators C that minimize the H ~  norm of 
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w1 

v 

Fig. 1. Closed Loop Configuration 

W2 

Following the standard convention, we denote 

7o = inf {I]FCII~ : C is a stabilizing compensator} 

For 7 > ~/0 denote by C. r the set of strictly 7 suboptimal, stabilizing compen- 
sators. The following is our result, pertaining to this problem. 

T h e o r e m  6. Let X ,  Y > 0 be the stabilizing solutions of the LQG Riceati equa- 
tions 

X A  + A ' X  - X B B ' X  + C'C = 0 
A Y  + Y A '  - Y C ' C Y  + B B '  = 0 (4.1) 

Then 7 > 70 ¢~ 7 > 1 and 3Z(t) >_ O, E L~[0, 1], satisfying 

1 
2 = ZA'  + AZ  + ~-V-L-7_~ZC'CZ + BB '  (4.2) 

subject to Z(O) = Y and (72 - 1)I > X½ Z(1)X½. Given 7 > 70 and the asso- 
ciated solution of (4.2), let matrices and matrix functions U ~ and V i be defined 
below. Then the set C./ comprises compensators that can be realized as follows 

~c(t) = Axc(t) - Bu( t  - 1) + YV'(e( t )  - Cxc(t)) 

u(t) = v°xc(t) + f°  1 Vl(s)u~(s)ds + b(t) (4.3) 

c(t) = V°xc(t)  + f °  1 Y l ( s ) u t ( s ) d s -  e(t); b = Coc 

where the free design parameter is the stably realizable (neutral) system Co, 
selected freely, subject to the norm bound IICo][ < ~ - 1, and where the coef- 
ficients are defined as follows: 

1 
Az ( t )  = A + 7-T~_ I Z ( t )C 'C  

generates the transition matrix ~ z ( t, s ) : 

n = ~ ( ( 7  2 - 1 ) X  - XZ(1)) - lX ,  
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The matrix function E(t) solves 

d_ 72 C'C + Az '  ~ + F.Az + ~ = O, 

In these terms 

U ° = B'R~z(1,O), 

Robust Control of Input Lag Systems 

~(1) = R 

Ul(s) = B 'R~z (1 , s  + 1)B, 

v o = 

Vi(s) = 7~_tCY~z(s  + 1,0)' ~.(s + 1)B 

5 T h e  S t a n d a r d  P r o b l e m  

Here we consider the standard (four block) problem, as defined in terms of the 
system (2.1). The optimal value 70 is now the infimal H a  norm of the mapping 
Tzw : w ~+ z with stabilizing compensation u = Cy. Given 7 > 70, the set 
C~ contains the stabilizing, strictly 7 suboptimal compensators. Again, to avoid 
issues of well posedness, and without any effect on 7o, we restrict our attention 
to compensators with atomic, neutral FDE realizations. This problem will be 
considered under the following, standard assumptions. 

A s s u m p t i o n  5.1 1. The pairs [A, B1] and [A, B2] are stabilizable . 
2. The pairs [A, C1] and [A, C2] are detectable. 
S. D'12[C, O12] = [0 If 
4. D21[B~ D~t] = [0 I] 

The pertinent result follows. 

T h e o r e m 7 .  ~/ > % ¢~ 3X, Y >_ 0 and Z(t) > 0 E LocI0,1], satisfying the 
following. 

- B2B2)X + C1C1 0 (5.1) X A  + AIX + X(  BIB~ ' , = 

and 

is stable; 

Set 

1 
= ~ - B '  A1 A + ( B1B~ B2 2)X 

2 + ZA  + A 'Z  + ~ Z B I B ~ Z  + C~C1 = 0, Z(1) = X; 

Az(t)  = A + ~B1B' IZ( t )  

(5.2)  



Time-delay Systems 

let ~z(t ,  s) be the generated transition matrix and 

a(t)  = ez( t , s )SxBIez(s , t ) 'as  

In these terms 

(A + ~B1B~Z(O))Y + Y(A  + ~BxB~Z(O))' 

such that 

A2 = A + ~ B 1 B ~ X  + Y ( ~ z ( 1 , O ) ' X B 2 B ~ X ~ z ( 1 , O ) - C ~ C 1 )  
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(5.3) 

= Acooxc(t) + Acmut + Bcly(t) + Bc2v(t) 

= Aclox~(t) + Acllut + v(t) (5.4) 

= -Cux~(t) +y(t),  v = Coq 

where the free design parameter is the stably realizable (atomic neutral FDE) 
system Co, subject to the L2(O, c¢) - induced norm constraint IICojt < V, and 
where the coefficients in (5.4) are defined as follows: 

1 B , Acoo = A + ~ 1B1Z(0 ) - YC~C2, 

Acolut = ~ f - l ° B 1 B I ~ z ( s  + 1,0) 'Z(s  + 1)B2ut(s)ds + B2u(t - 1), 

= YC , 

Be2 = ~J~Y~z(1,O)'XB2, 

Aclo = - B ~ X ~ z ( 1 ,  O), 

A~laut = - f °  1 B ~ X # z ( 1 ,  s + 1)(I + G(s + 1)Z(s + 1))B2ut(s)ds 

 c(t) 

u(t) 

q(t)) 

is stable. Assume that, indeed, V > Vo, let X ,  Z(s) and Y be the said solutions 
of the Riccati equations (5.1), (5.2) and (5.3). Then the family of stabilizing, 
strictly V - attenuating compensators u = Cy is parameterized in terms of the 
following realization. 



274 Robust Control of Input Lag Systems 

6 Proo f  of Theorem 5 

Notwithstanding various differences in detail and even some changes in impor- 
tant features in the makings of the three H~  problems that are represented by 
the results stated above, the proofs of these results share the same fundamental 
structure, we shall thus be content with an outline of the proof for the first of 
the three stated theorems, Theorem 5. 

The transfer function Nt(s) - Ml(s)e-sO(s) has a stable realization of the 
form (2.1), with the coefficient substitutions A -  QC'C ~ A, B - Q C ' D  ~ B1, 
QC' ~ B~, C ~ C1, D ~ Dll, - I  ~ D12, 0 ~ Cz and I ~ D22, and with the 
mapping u = Oy assuming the compensator's rote. 
A Differential  Game.  The analysis is an adaptation from that of the regular 
case in [33]. 

L e m m a 8 .  / f 7  > 70 in (3.1) then for any (x(O),uo) e M2 there exists a unique 
solution w*, u* for the (open loop) game 

inf {"?llwll~-inf Ilzll~} (6.1) 
weL2[0,cx)) uEL2[0,c~) 

The game (6.1) is analyzed in two steps. First considered is its restriction to 
[1, cx)). The problem's data is then x(1) and the optimization is over the pertinent 

selections u I [o,oo) and w ![1,~)" Substituting ~5(t)= u ( t -  1), the delay is input 
eliminated and results from the ordinary case apply. 

I | 

L e m m a 9 .  The [1, oc) restriction of (6.1) is solvable if and only if 7 > ~ = 

P ( X ~ s Y a s ) ' F ° r T > ' t h e m a t r i x R = [  08tO Z~s 10 ]satisfies 

RA + A'R + R ( ~ B ' B - Q C ' C Q )  R =O (6.2) 

and the matrix 
A I = A + ( ~ B ~ B - Q C ' C Q )  R 

is stable. The optimal value of the restricted game is -(x(1),Rx(1)) and the 
optimal trajectories w*, fL* and x* satisfy the equations - 

w* = -~BIRx * 

and 1 
= (C(I - QR) + ~DB'R)x*  

Now (6.1) reduces to the L2[0, 1] optimization problem 

tiztl   o,lj- Rx(1) }  63) 
considered for /̂ > ~ with the data (x(0), Uo). Extending results from [12, 23] 
one has 
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L e m m a l 0 .  The problem (6.3) is solvable ¢~ 7 > Po and 3Ro as stated in 
Theorem 5. Given the definitions in Section 3, then 3!x,p E L2[0,1] s.t. 

]c = ( A - G 2 C ) x  + G1G*lp + G2~ 

= - H ~ H l x  - ( A - G 2 C y p -  H~E12~t 
(6.4) 

where fi(t) = uo(t - 1) is part o] the initial data and p(1) = Rx(1). The optimal 
state is then x* = x and the optimal input is 

w* = H2x* + E21G~p* T E22u 

This completes the proof of necessity in Theorem 5. 
In preparation for the proof of sufficiency and of the validity of the param- 

eterization (3.3), assume the necessary conditions are met, whereby, in partic- 
ular, (6.1) is solved, as explained above. We shall now compute complete state 
feedback expressions for the solution of (6.1) (i.e. we shall seek formulae that  
determine the optimal inputs at the time t in terms of (x(t), ut)) and the optimal 
value of the game, as a quadratic form in the complete initial state. 

Both tasks pend on solving (6.4). Let Ro be the solution of (3.2), which 
existence is now assumed. Setting q = R o x - p  and invoking (3.2), the Hamilton- 
Jacobi-Bellman system (6.4) assumes an equivalent, upper block triangular form 

= Aox - GIG~q + G2~ 

(1 = - A~oq + (RoG2 + H~E12)~ 
(6.5) 

with q(1) = 0. Eqs. (6.5)-(6.4) are easily solved, first for q (which is independent 
of x), then for x and finally, for p. Direct variations of parameters computation 
yields 

• (1) = ~o(1 ,0 )~ (0 )  + fo ~ ~o(1 , s ) .  

p(o) 

• ( (I  + z P ~ ) c 2  + ZHiE~2)(S)=o(S - 1)ds 

no(0)x (0 )  + fo ~ ~ ( s ,  0)'. 
(6.6) 

• (noG2 + HiE12)(S)Uo(S - 1)ds 

Evidently, the restriction of (6.1) to any ray [t, oo), given (x(t), ut), will be solved 
in complete analogy to the solution of that problem in its original setting (i.e., 
over [0, co), given (x(0), Uo)). Let the "." super-script denote the solution of the 
latter. The uniqueness of that solution implies, furthermore, that  the solution of 
the restriction of (6.1) to any ray It, oo), given the initial data (x*(t), u~), must 
coincide with the restriction to [t, oo) of the origifial solution, over [0, co). (This 
is the standard argument in any dynamic programming solution.) In reference 
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to optimal trajectories, one can thus substitute x(t), ut, x(t  + 1) and p(t) for 
x(0), u0, x(1) and p(0), in (6.6) - 

• *(t + 1) = ~o(1,0)~'(t) + L ~ to(1,~). 

p*(t) 

• ((I -}- ~Ro)V2 -}- -H1E12)(s)u  t (s - t)ds 

Ro(0l~*(t) + L ~ ~(~, 01'. 
(6.7) 

• (RoC2 + H { E t 2 ) ( s ) u ; ( s  - 1)ds 

These expressions can be then used in the formulae for the optimal solutions 
along the first time unit, which have been provided in Lemmas 9 (for u*) and 
10 (for w*) - 

w*(t)  = g2x*( t )  + E21CIp (t) + E22u (t - 1) 

u*(t) = ( C ( I -  QR) + ~ D B ' R ) x * ( t  + 1) 
(6.S) 

j = 

~*(t) = L°x(t)  + Ltut ,  u*(t) = K°x( t )  + K l u t  

where ~ = E~ 'w( t )  - ~D' (Hlx( t )  + E12u(t - 1)). 
To compute the optimal value of (6.1), make the following definitions: the 

mapping A/'(x(0),Uo) ~+ (x(O),p(O),uo) translates the boundary value problem 
data in (6.4) to the data in an allied initial value problem, utilizing (6.6); the 
mapping Y~4 (x(0), p(0), uo) ~ (x(1), x(.), p(-), uo (-+ 1)) is defined in terms of the 
variations of parameters solution of the said initial value problem; set a matrix 

R 0 
0 H~HI 
0 0 
0 E;2HI 

0 0 
0 H~E12 

-G~GI  0 ' 
0 E12E12 

finally, define T~ = AflM'J~.4Af. In these terms, the optimal value of (6.1) is 
<(x(0), ~o), n(x(0), uo)). 
Explicit computations, based on the definitions, above, show that 7~ is defined 
by the unique solution of (6.4), via 

n(x(O),uo) = (p(0), E~2(glx(" + 1) (6.9) 
+E12u0(')) + G'2p(" + 1)) 

Details of these computations can be found in the author's papers that are cited 
above. They are based on straightforward, albeit somewhat lengthy manipula- 
tions of the Hamilton-Jacobi-Bellman system. 

Once (6.7) is substituted in (6.8), the desired complete state feedback formulae 
are obtained. For convenience we introduce the abbreviated notations 
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T h e  different ial  game:  An  abs t rac t  mode l  based solution. Let an abstract 
model of the form (2.2) be associated with our system; it is constructed by first 
bringing the system to the form (2.1), as explained earlier, and then on the 
association of (2.1) with (2.2). 

L e m m a  11. (i) For any L2 inputs and the associated state, denote 

wV(t) = ~(t) - L°x(t)  - Llut  and u v = (2E~2E12)½(u(t) - K°x( t )  - K lu t )  

and f ( t )  = (x(t),ue). Define also mappings 

B l w  v = ( a l w V , 0 )  

1 V /~2u v = (2E[2E12)-~B2u 

e l f  = / / 1 I  ° + E 1 2 I ~ ( - 1 )  

Then these definitions imply 

w v (t) = 72 - 13~TCf and u v = 213~TLf 

(ii) v t  > o 

7 211wll~=[o:l - z l l~ to  ,t - <f(t) ,  TLf(t))M2 
(6.10) 

w V 2 = L~[O ~] -- lluVll~to,t] - ( f ( 0 ) ,  7~f(0)>M~ 

(iii) Let Sl(t)(x(O),uo) = (x(t), ut) be defined in terms of shifts along optimal 
solutions of (6.1). Then $1 is an exponentially stable Co - semigroup over M2, 
generated by 

A l l  = ((A - G:C + GxLO)f ° + G I L l f  1 + G2fl(_1) 'd"ss ) d  f l-  

over the domain 

{ } D(A1)=  I E M 2  : ds EL2[-1,0], f l ( O ) = K ° f ° + K l f l  

(iv) Trajectories o f f ( t )  = ( x( t ), ut ) are governed by the abstract model 

: "~- A l l  "}- BlW v -[" B2U V 
(6.11) 

(v) The following integral, operator Riecati equation is satisfied over M2 

(f,  Tgf>M2 = f ~ ( f  , Sl(t) '  (C~C1 - TiBII3~Ti) Sl(t)f>M2dt (6.12) 
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Part (i) of Lemma 11 follows directly from the definitions of w v,  u v and 
/3i, and from the explicit form of ~ ,  as computed above. Since existence and 
uniqueness of solutions of (6.1) are established, the algebraic semigroup property 
of $1 (in part (iii)) follows. The complete-state feedback formulae for the optimal 
w and u show" that optimal trajectories satisfy well posed integro-differential 
equations,(equivalently, a well posed neutral FDE [32]). Continuous dependence 
on the data and strong continuity in t, follow immediately. From the analysis 
of the restriction of (6.1) to [1, c¢) it followed that optimal trajectories of x(t), 
t > 1, are generated by the exponentially stable ODE 

= A l x  

In particular 
Iix(t)ll~o <__ c~e-Z(t-1)tlx(1)ll~ ~, t > 1 

for some positive c~ and/3. The optimal inputs satisfy 

w ( t ) = ~ 2 B R x ( t ) ,  u ( t - l ) =  ( C ( I - Q R ) + ~ D B ' R ) x ( t ) ,  t > l  

Hence the exponential decay of (x(t), ut) relative to x(1) and, eventually, relative 
to (x(0), Uo). Consequently, ,91 is exponentially stable. The form of the generator, 
A1, and its domain, are obtained by standard associations [32] of neutral FDEs 
and their semigroup representations. The association of the current case with 
the general setting of [32] is similar to what is explained in the outlined proof of 
Lemma 1. The same applies to the abstract model (6.11), for the inhomogeneous 
system. The equalities (6.12) and then, (6.10) are obtained by a laborious and 
yet straightforward manipulation of the integral variation of parameters formula 
in (6.11). 

The proof of Theorem 5 will be complete with the following lemma. 

L e m m a  12. If 7 satisfies the necessary conditions in Theorem 5 then 7 > 7o 
and 0 E O r ¢* 0 admits the following realization 

u = gclfc + /)c12¢ (6.13) 

~here ( I Acre= ( A -  'C o C' 1 1 

is defined over the domain 

K fc + K X f  1 l:)(-4 c) = fc e M2 : ~ssf~ e L2[-1,0], fcl(0) = o 0 
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where the remaining coefficients are 

B~I = 61 

~c2 ~ ~S 

C c l f c  = K ° f ° c  -l- K l f  1 J C '  

t - -£ /)c12 = (2ElsEls) 2, 

1D,H ~to I D , E  t l l  1 ~ Cc2A = - ( L  ° + ~  1 J J c - L l f  1 - ~  12Jc(- ), 

~)cSt ---~ S ~  1 

and where the free design parameter, the mapping 0o, is defined by the I / 0  
mapping in a stable, neutral FDE with the L2[0, c~) induced norm bound IlOoll < 
1. Moreover, trajectories of (6.13) correspond to trajectories of (3.3) via re(t) = 
(xe(t),ut). Thus the parameterizations (6.13) and (3.3) are identical. 

The system (3.3) is built of the closed loop interconnection of two well posed, 
atomic integro-differential equations of neutral type: one is O0 and the other is 
the strictly proper system which governs the dynamics of xc and u, with the 
exogenous input ¢ and output !1). This interconnection is thus a well posed 
neutral integro-differential equation in its own right. The last statement in the 
Lemma 12, namely, the association of (3.3) with (6.13) is yet another standard 
association of an integro-differential equation of neutral type with an abstract 
model [32]. This association thus implies, in particular, that the abstract model 
(6.13) is well posed and that ~4c is the infinitesimal generator of a Co - semigroup 
over Ms. Furthermore, close inspection shows that the dynamics is identical to 
the associated dynamics of the original system (that is, wi~h the state x). 

The following is an outline of the proof of stability of (6.13) and the induced 
norm bound in. The notation "¢ = 00¢" in (6.13) represents the I/O mapping 
in a stable, neutral FDE. Let f0 be the state in a stable M2 realization of O0. 
Including the contribution of the homogeneous part (and the initial state) to the 
output, in that system, we denote ¢ = Tofo(0) + Oo¢; in these terms To and O0 
are bounded operators from M2 and L2[0, o0) into L2[0, c~), respectively. The 
condition IIOoll < 1 allows us to introduce the notation of A s = 1 - IIOoll 2. 

To establish stability set w = 0 and select a combined initial state 
(re(0), fo(0)) in (6.13) and the said realization of Oo. Then w v = ¢ = Ccsfc 
and u v = ¢. Using these equalities, (6.10), and the induced norms HToH and 
llOolt, one obtains the inequality 

o <_ (lo(o),nlc(o))M  + lIT011Sll/011b  

+211Ooltllrotltt/ollu ll¢flL to,,l -  Sll¢lt  to, l 
(6.14) 
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where the right hand side is a quadratic expression in II¢llL2[0,t]. This leads to 
a bound of [l¢llL2[O,~) in terms of l]fc(0)HM2 and Ilf0(0)[lM z. Since II¢11L2[0,~) is 
bounded in terms of Itf0(0)llM~ and II¢llL~tO,~, the continuity of the mapping 
(fc(0),fo(0)) ~ (¢ ,¢ , fo )  M2 × M2 ~ L2 × L2 × L2 is established. The stable 
state equation in (6.11) is valid with fc, ¢ and ~ substituting f ,  w v and u v.  
This verifies the continuity of (fc(0),¢, ¢) ~ f~. Consequently the mapping 
(f~(0), fo(0)) ~ (re, fo) M2 × Mz ~ L2 × L2 is continuous. As is well known [4], 
that  last continuity is equivalent to exponential stability. 

To establish 7 suboptimality of (6.13) select w ~ 0 with the zero initial da ta  
. Then again, fc(t) = (xc(t), u~) is a trajectory of tile original system (2.1) (with 
the interpretation specified in the beginning of the proof). Using the established 
stability, let t -~ c~ in (6.10) - 

7211wll ~ -Ilzll~ = IlwVil~ -IIOowVil~ >__ ~llwVli~ (6.15) 

The mapping w v ~ w is governed by the stable (6.11), the relation u v = 
~9ow v and the output equation w = 79~ (w v -C~2f). That  mapping is therefore 
continuous and  211wVll  can be bounded below by  211wll , with some fixed 
# ~ 0. Thus the closed loop L2 induced I /O norm is < ~ - #2. 

The argument for completeness of the Parameterization will be briefly out- 
lined, to complete the proof. Given any stable, 7 suboptimal ~9, one can realize 
the closed loop mapping w v ~ u v,  denoted 690, by an appropriate, well posed 
perturbation of the original closed loop system. Relying heavily on (6.10), it can 
be shown (in similarity to arguments used in [26, 33]) that  ~9 is a stabilizing 
closed loop compensator in the latter system, and that  it renders the closed loop 
mapping O0 a strict L2 contraction. It is then easy to reconstruct the closed 
loop mapping 69 : w ~ u in terms of the original system and of 690 is. That  
reconstruction is (6.13). m 
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A b s t r a c t .  This chapter is concerned with robust guaranteed cost con-  
trol  for uncertain linear time-delay systems with quadratically con- 
strained uncertainty using a linear matrix inequality (LMI) approach. 
We only consider the case of using memoryless static state feedback 
in this chapter. Two specific problems are considered in this chapter, 
namely the robust guaranteed cost control problem for linear systems 
with single state delay and the one for systems with mixed state and 
input delays. We show that feasibility of some LMIs guarantees the solv- 
ability of the corresponding robust guaranteed cost control problem. 

1 Introduct ion 

Stability and stabilization of dynamical systems which include time-delays in 
their physical models are problems of recurring interest since the existence of 
delays often induce instability and/or undesired performance (see, e.g. [7, 6, 11, 
10, 15]). 

Although the last decade has witnessed significant advances on the robust 
control theory [20], the robust control problem for linear systems with delayed 
state and/or delayed control input has not been fully investigated. There are, 
however, some results on robust control of time-delay systems available in lit- 
erature. For example, robust memoryless controllers have been considered in 
[17, 18] (delay-independent closed-loop stability) or in [12, 9] (delay-dependent 
closed-loop stability) using the Lyapunov's second method 5ased on Lyapunov- 
Krasovskii functional approach [12, 13], or on the Lyapunov-Razumikhin func- 
tion approach [9, 17, 13]. 

In this chapter we consider a class of uncertain linear systems described by 
differential equations with delayed state as well as delayed control input. The 
focal point of the chapter is to design finite dimensional memoryless static state 
feedback controllers that make the closed-loop systems uniformly asymptotically 
stable for all admissible uncertainties and guarantee an adequate level of perfor- 
mance. The performance index considered in the chapter is an integral quadratic 
cost function as in the LQ regulator problem, see e.g. [14, 16]. Reza Moheiami 
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and Petersen [16] have already considered this problem in the delay case, but 
handling uncertainties only on the non-delayed state, which is a particular form 
of the proposed fi'amework. 

The approach adopted here is based on the Lyapunov-Krasovskii functional 
technique [13] combined with an LMI technique [1]. The obtained conditions are 
delay-independent (do not include any information on the size of delay) and han- 
dle only the case of a single and constant state delay. Using an appropriate choice 
of the Lyapunov-Krasovskii functional, these results can be easily extended to 
multiple state delays case or to the time-varying delay case. 

The chapter is organized as follows: in Section 2, some preliminary results 
are given. Section 3 is devoted to robust performance analysis problem. The 
single state delay case is treated in Section 4, and the mixed state and input 
delays case is considered in Section 5. We illustrate our design procedure using 
examples in section 6. Some final remarks conclude the chapter. 

No ta t ions .  The following notations are used throughout the whole chap- 
ter: Cr = C([-7, 0], lR n) denotes the Banach space of continuous vector functions 
which maps the interval I-v, 0] into IR n with the topology of uniform conver- 
gence; I1¢11c = suP-r_<t<011¢(t)ll is the norm of a function ¢ e Cr; Cr v is the set 
defined by C~ = {¢ E Cr : I]¢l]c < v}, where v is a positive real number. The 
rest of the notations follow the convention. 

2 P r e l i m i n a r i e s  a n d  D e f i n i t i o n s  

Next, we introduce and define the S-procedure. 

Defini t ion 1. [19] 
Denote a space 1H and let F(g), Yl(g) , . . . ,  Yk(g), g E ]H, be some functionals or 
functions. Further define domain IF: 

F = {g c rq: Yl(g) _> 0 , . . . ,  yk(g) _> 0} (2.1) 

and two conditions: 

(A) Y(g) > 0, Yg e F;  
(B) 3el > 0 . . . .  , ek >_ 0 such that 

k 

s(~ ,g)  = 3:(g) - ~ ~jy~(g) > 0, 
jml 

vg e ~ .  (2.2) 

Then (B) implies (A). The procedure of replacing (A) by (B) is called the S- 
procedure. 

Defini t ion 2. [19] The S-procedure for the condition (A) is said to be lossless 
if (A) is equivalent to (B) and lossy otherwise. 
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In fact, (B) implies (A) is rather trivial as the S-procedure in this case is 
almost equivalent to Lagrange multipliers method which is frequently used in 
optimization. However, the S-procedure tossless property is not trivial. One of 
the important S-procedure results we will use in this chapter is the following 
S-procedure lossless lemma: 

L e m m a  3. [19] If k = 1, ]H is a real linear space and jz, Yl are quadratic 
functionals, the S-procedure is lossless. 

We also recall the following linear matrix inequality result: 

L e m m a  4. 
~i~xm V 6 

if and only if 

[1, ~] Given a symmetric matrix ~ E ]R m×m and two matrices U 6 
]R ~2xm. There exists a matrix (9 of compatible dimension such that 

-~ u T ( ~ T v  + v T ( ~ u  < 0 (2.3) 

uT~u± < 0 (2.4) 

v I e v ±  < o (2.5) 

where U± 6 IR m×j~ and V± E ]R m×j2 are any matrices whose columns form 
bases of the null spaces of U and V, respectively. 

3 R o b u s t  P e r f o r m a n c e  Analysis 

Consider the following uncertain linear time-delay system 

Ax(t) + Adx(t -- rl) + Bax(t - v2) 

+Hl¢l(t) + H2¢2(t) + H3¢3(t) (3.1) 

zl(t) = Elx(t) + E~l¢~(t) (3.2) 

z2(t) = EdlX(t -- ~1) + g22~2(t) (3.3) 

z3(t) = Ed2X(t-- r2) + E23~3(t) (3.4) 

with the initial condition 

x(to +O) = 0(9), V8 6 [-max{vl,r:},0]; (t0,¢) 6 IR + x C v maxIT1,T2} 

where x(t) 6 IRn is the state, zi(t) 6 ]R k~, i = 1, 2, 3, the fictitious outputs, 
and ¢i(t) 6 IR k~ , i = 1, 2, 3, the uncertain variables. We call the uncertainties as 
admissible if the uncertain variables satisfying the following quadratic constraint 

3 3 

ll~i(t)H 2 _< ~ tlzi(t)H 2, vt >_ to. (3.5) 
i----1 i = 1  

In the above, A, Ad, Bd, H1, H2, H3, El, Eel, E22, E23, Edl and Ed2 are 
known constant matrices of appropriate dimension. 



286 Robust Guaranteed Cost Control 

Remark 1. Note that (3.5) allows dynamic, time-varying and nonlinear uncertain 
structures. For H1 ~ / / 2  ~ H3, the uncertainties added to the state matrix, the 
delayed state matrices have different structures. 

Remark 2. The following well-known uncertain linear systems with delayed state 

~(t) = (A + AA)x(t) + (Ad + AAa)x(t - rl) + (Bd + ABd)X(t -- r2) (3.6) 

with norm-bounded uncertainty 

[ AA AAd ABa ] = H1E(t)[El E4I Ed2], FT(t)F(t) <_ I, Vt > to 
(3.7) 

is a special case of system (3.1)-(3.5) with E2i = 0, i = 1, 2, 3 and H1 = / / 2  =/-/3. 

Remark 3. It seems to be nature that the uncertainties are admissible if the 
uncertain variables satisfying the following quadratic constraints: 

[lffi(t)l[ e <_ Hzi(t)l[ 2, i = 1,2,3, vt _> to. (3.8) 

However, we notice that all uncertaimies satisfying (3.8) will also satisfy (3.5), 
the reverse is not necessary true. Therefore, (3.5) allows a broader class of un- 
certainties than (3.8). On the other hand, (3.5) permits the so-called non-generic 
uncertainties, i.e., the uncertain variables and the fictitious outputs could have 
the following relation 

H(i(t)l] 2 > I[zi(t)H 2 (3.9) 

for a specific fictitious output signal zi(t) at a specific time instant t as long as 
the overall constraint (3.5) is satisfied for all time instant. It is generally diffi- 
cult to describe and treat the non-generic uncertainties using other uncertainty 
descriptions like norm-bounded uncertainty. 

Without loss of generality, we assume to = 0 in the sequel. 
Associated with system (3.1)-(3.5) is the following quadratic cost function: 

~0 °° 
f l  = xT(t)Qx(t)dt, Q E ] R  ~×~, Q > 0 ,  v t > 0 .  (3.10) 

Now, we address the robust performance analysis problem associated with 
the uncertain system (3.1)-(3.5) as follows: 

Determine if the system (3.1)-(3.~) is uniformly asymptotically stable and 
find an upper bound for the cost function (-3.10) for all admissible uncertainty 
satisfying (3.5). 

We then have the following result for the robust performance analysis prob- 
lem: 

T h e o r e m 5 .  Consider the system (3.1)-(3.4) with uncertainty satisfying (3.5), 
the robust performance analysis problem associated with the uncertain time-delay 
system (3.1)-(3.5) is solvable if there exist matrices P E ]R n×n, $1 E IR n×n, 
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$2 6 IR nxn, P > O, $I > O, $2 > 0 and scaling scalar parameter e > 0 such that 
the following LMI is feasible: 

where 

7)11 = 
7:)15 

7)13 

7)11 7)12 7)13] 
£1= 7)T P22 P23 <0. 

7)22 

7:)23 = 

~33 = 

ATp + PA +eETE1 +Q + S1 +$2 
[PAa PBd] 
[PH1 + eETE21 PH2 PH3] 
[ - S I + e E T E a l  0 ] 

0 -$2 + eET2E~2 

[ OeETE22 0 0 TO ] 
~EJ2E~. 

--elkl + eET E21 0 
0 -clk2 + eETE22 
0 0 

0 ] 
0 

-dk. + ~E~E23 

Vt > 0. (3.12) 

Proof. Consider the following Lyapunov-Krasovskii functional candidate: 

f' fl V(t, xt) -'- xT(t)Px(t) -}- xr(8)Stx(O)d~ + xT(~)Sex(O)dt~ (3.13) 
T 1  T 2  

where P > O, $1 > 0 and S~ > O. 
We can easily verify that 

Ami.(P)llx(t)ll 2 <_ V(t, xt) <__ (Am..(P) + T1)~max(S1)-{-T2~max(S2))]lXtll~. 
(3.14) 

Denote ~'(t, xt) the derivative of the Lyapunov-Krasovskii functional V(t, x~), 
then the following inequality 

V(t, xt) + xT(t)Qx(t) <_ 0 (3.15) 

guarantees both uniform asymptotic stability and the upper bound (3.12) for 
the cost function (3.10). Indeed, we have 

V(t, xt) <_ -xT(t)Qx(t) < O, Vt > 0 (3.16) 

and xT(t)Qx(t) = 0 if and only if x(t) = 0. According to Lyapunov-Krasovskii 
stability theorem, conditions (3.15) and (3.16) guarantee the uniform asymptotic 
stability of system (3.1)-(3.4) without constraint (3.5). 

(3.11) 

Moreover, the cost function (3.10) satisfies the following bound: 

/° f° J <_ xr(O)Px(O) + xr(o)slx(O)dO + xr(o)S2x(O)dO, 
- -  T 1  "J - -  T 2 
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On the other hand, integrating (3.15) on [0, t], then it is obvious that  (3.15) 
is a sufficient condition to guarantee 

? y(t, ~ , )  - ~ r ( o ) P ~ ( O )  - xr(O)Si~:(o)do 

- ~r(o)S2x(O)dO + J(t) <_ o, 
~2 

V t >  O, 

Since V(t,  xt) _> 0, Vt > 0, we have 

J ( t )  <_ xT(O)Px(O) + xT(o)Slx(O)dO + xT(O)S2x(O)dO, Vt > O. 
T1 T2 

(3.17) 
Furthermore, due to the uniform asymptotic stability we have established, 

x(t) -+ 0 when t ~ ~ :  Then we have 

2 ; J <_ xT(O)Px(O) + xT(o)Slx(O)dO + xT(O)S2x(O)dO. 
T1 T2 

Applying S-procedure to inequality (3.15) with constraint (3.5), we conclude 
that (3.15) is satisfied under constraint (3.5) if there exists scaling parameter 
e > 0 such that 

3 

~7(t, xt) + xT(t)Qx(t)  + ~ ~(llz~(t)fl 2 -II;~(t)il 2) _< 0, (3.18) 
i = 1  

and the S-procedure (3.18) is lossless according to Lemma 3. 
Since 

fc'(t, xt) = icT(t)Px(t) + xT(t)PJc(t) + xT(t)Slx( t)  -- xT(t  -- ~'l)S,z(t - rl) 

+xT (t)S2x(t) -- xT (t -- T2)S2x(t - -  T2), 

we can rewrite (3.18) in the following form: 

z( t )  
x( t  - ~ )  
~(t  - ~ )  

~l(t) 
~ ( t )  
~3(t) 

T x(t) 
x(t - ~'1) 

f~l z ( t -  ~-2) 
~x(t) 
~2(t) 
~3(t) 

< 0. (3.19) 

(3.11) is a sufficient condition to guarantee that  (3.19) is satisfied for all 
admissible uncertainty. 

In fact, we can require that the following inequality instead of (3.18) holds: 

3 

re(t, xt) + 5xT(t )Qx( t )  + ~ ~( l lz~( t ) l l  2 -IK~(t)ll 2) _< 0 (3.20) 
i = 1  
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for any given 5 > 0. The physical explanation of (3.20) is that we require 

?(t, < - tlx(t)lt 
holds for any given 5 > 0 subject to constraint (3.5). However, since 5 > 0, we 
can absorb it into P,  $1, $2 and e, namely, let 

1 1 1 1 

then (3.20) takes the same form as (3.18), and this absorbing procedure doesn't 
invalidate condition 1 of Lyapunov-Krasovskii st~ability theorem and affect the 
upper bound for J .  Therefore, without loss of generality, we use (3.18). [] 

Instead of system (3.1)-(3.5), we can alternatively consider the following sys- 
tem with a different uncertainty structure: 

~c(t) = Ax(t) + Adx(t - vl) + Bdx(t - T~) + Hl((t) (3.21) 

z(t) = E1x(t) + E21x(t - 7"1) + E22x(t - T2) + Ea~(t) (3.22) 

where the admissible uncertain variables satisfy 

II~(t)]l 2 < Ilz(t)ll 2, Yt _> to. (3.23) 

We can use the same method as described above to tackle system (3.21)-(3.23). 
As a direct application, we consider the following uncertain linear system with 
single state delay: 

&(t) = Ax(t) + Adx(t - T) + Hl{(t) (3.24) 

z(t) = Elx(t) + E~dx(t - T) + E2¢(t) (3.25) 

with z(t) E IRk and the admissible uncertain variable ¢(t) E IR k satisfying the 
following quadratic constraint 

H~(t)ll 2 _< ]lz(t)lt 2, Vt _> to. (3.26) 

Then we have the following corollary straightforwardly: 

Coro l l a ry6 .  Consider the system (3.2~)-(3.25) with uncertainty satisfying 
(3.26), the robust performance analysis problem associated with the uncertain 
time-delay system (3.24)-(3.26) is solvable if there exist matrices P E IR,~xn, 
S E IRnxn, p > O, S > 0 and a scaling scalar parameter e > 0 such that the 
following LMI is feasible: 

[ A T p  + P A  + eETEI + Q + S PAd + eETEld PHI + eETE2 ] 
A TP + eETE1 eETEId -- S eETE2 < O. 
H T P  + eETE1 eETEI~ --eIk+ eETE2 

(3.27) 
Moreover, the cost function (3.I0) satisfies the following bound: 

J( t )  <_ xT(O)Px(O) + xT(O)Sx(O)dO, Vt > O. 
T 

(3.28) 
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Remark4. The feasibility of LMIs (3.11) and (3.27) can be easily determined 
using Matlab LMI Control Toolbox [5]. 

In the sequel, we will consider robust guaranteed cost control problem using 
memoryless static state feedback. We will simplify our derivative steps in order 
to reduce redundancy. 

4 Robust Guaranteed Cost Control - S i n g l e  State-delay 
C a s e  

Consider the following uncertain linear time-delay system 

it(t) = Ax(t) + Aax(t - v) + Bu(t) + Hl~(t) (4.1) 

z(t) = Elx(t) + E1dx(t -- T) + E3u(t) + E2~(t) (4.2) 

with the initial condition 

x(t0 + e) = ¢(e), ve e [-~,  0]; (to, ¢) e ~ +  × e l  

where x(t) E ]Rn is the state, u(t) E IR m the control input, z(t) E ]R ~ the 
fictitious output, and ((t) E ]Rk the uncertain variable satisfying the following 
quadratic constraint 

II¢(t)[l 2 _< Hz(t)ll 2. (4.3) 

Again, A, Ad, B, H1, El, Eld, E2 and E3 are constant matrices of appropriate 
dimension. 

Similar to the robust performance analysis problem, we take to = 0 without 
loss of generality. 

Associated with the system (4.1)-(4.3) is the following quadratic cost func- 
tion: 

J( t )  = (xT(t)Qx(t) + uT(t)Ru(t))dt, 

Q E ]R n×n, R E ]PJ n×m, Q:>0, R > 0 ,  V t>0 .  (4.4) 

We consider the following robust guaranteed cost control problem associated 
with system (4.1)-(4.3): 

Find a controller in the following form: 

u(t) = Kx(t) (4.5) 

such that the closed-loop system (~.1)-(~.5) is uni]o~vnly asymptotically stable 
and give an upper bound for the cost [unction ('~.4) for all admissible uncertainty 
satis]ying (~.s). 

We have the following theorem for robust guaranteed cost control using mem- 
oryless static state feedback: 
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T h e o r e m 7 .  Consider the system (4.1)-(4.2) with uncertainty satisfying (4.3), 
then there exists a memoryless static state feedback controller (4.5) that solves 
the addressed robust guaranteed cost control problem if there exist matrices X E 
]R '~×n, Y E ]R n×n, X > O, Y > 0 and a scaling scalar parameter e > 0 such that 
the following LMIs are feasible: 

AdY 
E~dY 

-Y o YG ] 
0 -c - l lk  ¢-lE~ 

EldY e-I E2 - e - l  lk 

e-il l1 X X 
e-l  E2 0 0 

X A  T + A X  X E  v 
E 1 X  - ~ - 1 I  k 

r A y  Y E  T 
c I H T  1 e - lET  

X 0 
X 0 

- Y  0 0 0 
0 - e - l I k  0 0 
0 0 - Y  0 
0 0 0 _Q-1  

< 0 (4.6) 

A/" < 0 (4.7) 

where 

0 h n + k  

with N any matrix whose columns form a basis of the null space of [B T ET]. 
Moreover, the cost function (4.4) satisfies the following bound: 

F or(t) <_ xT(o)X-lx(O) + xT(8)Y-lx(O)dS, 
T 

Vt > 0. (4.8) 

Proof. The closed-loop system of (4.1)-(4.2) with controller (4.5) is the following: 

~(t) = (A + BK)x( t )  + Adx(t - v) + Hie(t) (4.9) 

z(t) = (El + E3K)x(t) + EldX(t - v) + E2¢(t) (4.10) 

where the uncertain variable ¢(t) satisfying 

II¢(t)[I 2 < Ilz(t)ll 2. (4.11) 

Applying Corollary 6 to system (4.9)-(4.11), it is an easy exercise of using 
Schur complements that  (4.9)-(4.11) is uniformly asymptotically stable and the 
guaranteed cost (4.8) is satisfied if there exist P > 0, S > 0 and e > 0 such that 
the following LMI is feasible: 

(A + B K ) T p  + P(A + BK)  PAa PH1 e(E1 + EaK) T 
+S + Q + K T R K  

,4 P -s  o 
H T p  0 --dk eE T 

e(E1 + E3K) eEld eE2 --elk 

< o. (4.12) 
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We then rewrite (4.12) into the following form: 

+ 

Sn ,,1 

0 
0 
0 
0 
0 
0 

A T p  + PA PAd PH1 ~E T 

- s  o 
HT p 0 -eIk eE T 

eel eEld eE2 -eI~ 
Sn 0 0 0 
s,, o o o 
0 0 0 0 

K T [ B T p O O e E  T O0 Irn] + 

0 
0 
0 

_S-1 

0 
0 

7 
0 

eE3 
0 
0 

x~ o 
0 0 

0 0 

0 0 + 

0 0 

_Q-I 0 
0 R -1 

K[In 0 0 0 0 0 0] < 0. (4.13) 

Applying Lemma 4 to (4.13), note that 

is a matrix whose columns form a basis of the null space of [I I 0 . . .  0], and 

p-1 

£--I Im 

I3n-i-k 

0 0 

is a matrix whose columns form a basis of the 
null space of [BTp eE T Ira i 0 ... 0], further let X = p -1  and Y = S -1, 
we obtain (4.6)-(4.7) after some algebraic manipulations, c~ 

Remark 5. When P > 0, S > 0 and e > 0 are obtained, we can synthesize the 
controller using LMI (4.13). Indeed, we replace P, S and e in LMI (4.13) with 
their obtained forms, then the controller gain matrix K is the only unknown 
variable in LMI (4.13). It then requires some algebraic manipulations to get 
explicit expression for K.  However, we observe that  K is not unique due to the 
non-uniqueness of N. This is in fact one advantage which allows us to explore 
all possible controllers which solve the addressed robust guaranteed cost control 
problem. 
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5 R o b u s t  G u a r a n t e e d  Cos t  Contro l  - M i x e d  S ta te  and 
I n p u t  D e l a y s  

Consider the following uncertain linear time-delay system 

2(t) = Ax(t)  + Adx(t  - T1) + Bu(t)  + B~u(t - ~-2) 

+H,¢l( t)  + H2¢2(t) + H3¢3(t) (5.1) 

= g lx ( t )  + E21~l(t) + E3u(t) (5.2) 

= Edlx(t  - ~-1) + E22~2(t) (5.3) 

= g~2u(t - T2) + g23~3(t) (5.4) 

zi(t) 
z (t) 
z3(t) 

with the initial condition 

x(to +0)  = ¢(0), V0 e [--maxIT,,T2},0]; (to, ¢) ~ ~+  x C~x{~,~} 

where x(t) E ]1~ n is the state, u(t) E IR m the control input, zi(t) E IRk', i = 
1, 2, 3, the fictitious outputs, and ~i(t) E IR k~ , i = 1, 2, 3, the uncertain variables 
satisfying the following quadratic constraints 

3 3 

Z tl  (t)tl 2 < Jtz (t)Jt vt > to. (5.5) 
i-~1 i ~ l  

Again, A, Ad, B,  Bd, H1, H2, H3, El ,  E21, E22, E23, Edl, Ed2 and E3 are 
known constant matrices of appropriate dimension. 

Generally, it should be very restrictive to require T1 = r2. The two uncertain 
delays impose on output channels and input channels separately, therefore, it is 
unlikely for them to have a exact match. For this reason, we would like to treat 
vl and ~'2 as two independent delays while it is clear that the unified state and 
input delay is just a special case of our problem. 

We also take to = 0 without loss of generality. 
Associated with the system (5.1)-(5.5) is the following quadratic cost func- 

tion: 

J = (xT(t)Qx(t) + ur(t)Ru(t))dt, 

Q E I R  n×n, R E I R  m×~, Q > 0 ,  R > 0 ,  V t>0 .  (5.6) 

We consider the following robust guaranteed cost control problem associated 
with system (5.1)-(5.5): 

Find a controller in the following form: 

u(t) = Kx( t )  (5.7) 

such that the closed-loop system (5.1)-(5.5) is uniformly asymptotically stable 
and give an upper bound/or the cost function (5.6) for all admissible uncertainty 
satisfying (5.5). 

We have the following theorem for robust guaranteed cost control using mem- 
oryless static state feedback: 
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T h e o r e m 8 .  Consider the system (5.1)-(5.4) with uncertainty satisfying (5.5), 
then there exists a memoryless static state feedback controller (5.7) that solves 
the addressed robust guaranteed cost control problem if there exist matrices X 
]R n×n, Y1 E ]R nxn, Y2 E 1R ~×n, X > O, Y1 > O, Y2 > 0 and scaling scalar 
parameter e > 0 such that the following LMIs are feasible: 

[7~11 ~12 ] 
niv2 n2~ < o (5.8) 

[ ~.A Q12 Q13 

where 

with N any matrix whose columns form a basis of the null space of 

and 

T~11 = [ 

7"~12 = [ 

Qn = [ 

Q12 = [ 

Q22 

~33 = 

-Y~ 0 0 ] 
0 --e-lIkl + e-lETE21 0 ] 
0 0 - ~ - I I ~  2 

0 0 , 
0 E-1E T 

X A  T + A X  X E  T 0 
E1X - e - l  lk, 0 ] 

0 0 -e-11k~ 

AdY1 e-ill1 £-1H2] [ 
0 ~-lE21 0 , Q13 = 

0 0 0 

-Y1 o o ] 
0 --e-llkl 0 j , ~23---- 
0 0 --e-11k2 

-e- l lk3 0 0 0 0 
0 -e- l lk~ 0 0 0 
0 0 _Q-1 0 0 
0 0 0 -Y1 0 
0 0 0 0 -Y2 

~22 = [ -e-t Ik~ +Oe-l E~B23 o] 
--£-1Ik2 

e-lH3 0 X X X ' ]  
0 0 0 0 0 J e-lE23 0 0 0 0 

o Y~E~, 0 o o] 
0 0 0 0 0 
0 E-1E T 0 0 0 



Time-delay Systems 295 

Moreover, the cost function (5.6) satisfies the following bound: 

f F J ~_ xT(o)X-lx(O) q- xT(O)Yl-lx(O)d~ -}- xT(o)y2-1x(O)dO, Vt > O. 
T1 T2 

(5.1o) 

Proof. The closed-loop system of (5.1)-(5.4) with controller (5.7) is the following: 

~(t) 

z,(t) 
z2(t) 
z3(t) 

= (A + B K ) x ( t )  + Adx( t  - "rl) + B d K x ( t  - r2) 
+ H , ¢ l ( t )  + H~¢2(t) + H3¢3(t) (5.11) 

= (El  + E 3 K ) x ( t )  + E21~1(t) (5.12) 
= E d l x ( t  - T1) + E22~2(t) (5.13) 
= Ed2KX( t  - "r2) + E23~3(t) (5.14) 

where the uncertain variables {~(t), i = 1,2, 3 satisfying 

3 3 

~_. II¢~(t)lt ~ < ~ Ijz~(t)ll ~, vt > o (5.15) 
i=1  i=1 

Applying Theorem 5 to system (5.11)-(5.15), it is an easy exercise of using 
Schur complements that (5.11)-(5.15) is uniformly asymptotically stable and the 
guaranteed cost (5.10) is satisfied if there exist P > 0, S > 0 and ~ > 0 such 
that the following LMI is feasible: 

(A + B K ) T p  + P(A + BK) + KTRK PAd PBdK 
A~P -$1 + eET Edl 0 

KTBT p 0 -$2 + eKTET Ed2K 
H T p  + eE T (El + E3K) 0 0 

HT p eET Edl 0 
HT p 0 eET Ed2 K 

I. o o 
I,~ o o 
In 0 0 

PH, + e(E, + E3K)T E21 PH2 PH3 
0 eETE22 0 
0 0 cKTETd2E23 

--elk, + eET E2, 0 0 
+- 0 -~Ik~ + ~E~E2~ 0 

0 0 --elk3 + eETE23 
0 0 0 
0 0 0 
0 0 0 
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/ .  z. /~ 
0 0 0 
0 0 0 
0 0 0 

+- 0 0 0 
0 0 0 

_Q-1 0 0 
0 -S~ "1 0 

o o - S f  I 

<0. (5.16) 

We then rewrite (5.16) into the following form: 

ATp  + PA PAg 
A T p  -& 

0 0 
H T p  0 
H T p  0 
H T p  0 

eE~ 0 

0 £Edl 
0 0 

i .  o 
I,~ o 
I,~ o 
0 0 

eEVl 0 
0 eE~ 
0 0 

eE T 0 

o ~E~ 
0 0 

+- -elk~ 0 
0 -el~= 
0 0 
0 0 
0 0 
0 0 
0 0 

0 PH~ PH2 PH3 
0 0 0 0 

- &  o o o 
0 -eIk~ 0 0 
0 0 -elk= 0 
0 0 0 -elk3 

0 eE21 0 0 
0 0 eE22 0 
0 0 0 eE2a 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 I,~ In In 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

eE T 0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 

-elka 0 0 0 0 
0 _Q-1 0 0 0 
0 0 - -Sl  1 0 0 
0 0 0 - S f  ~ o 
0 0 0 0 - R  -1 
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I~ O 
0 0 
o 
0 0 

0 0 
0 0 

-l- 0 0 K T 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

P B  PBd 
0 0 
0 0 

0 0 
0 0 
0 0 

eE~ 0 
0 0 
0 eEd2 

0 0 

0 0 
0 0 

I., o 

+ 

P B  
0 

0 

0 
0 

0 
eE3 

0 
0 
0 
0 
0 

Im 

PBd 
0 
0 

0 
0 
0 
0 
0 

£Ed2 
0 
0 
0 
0 

0 0 
o i~ 
0 0 
0 0 
0 0 ! 

K 0 0 [ 
B 

0 0 I 
I 

0 0 
0 0 [ 

°°  t 0 0 
0 0 

297 

T 

< 0.(5.17) 

Applying Lemma 4 to (5.17), note that  

0 0 

z. o 

0 0 

0 -[4n-b2kl+2k2+2ks 

is a matr ix  whose columns form a basis of the null space of 

['ot001o ]00] 
and 

p - i  

e-1/m 
e-i lm 

I4n+kl+2k2+kz 

N 

0 

0 

0 

0 

I4n+ kl-.b 2k2-]-k3 

is a matr ix whose columns form a basis of the null space of 

B T p  eE T 0 

we obtain (5.8)-(5.9) after some tedious algebraic manipulations. 
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6 Illustrative Examples 

Example 1. Consider the uncertain system (4.1)-(4.2) with parameters given by: 

A=f3 0] 
0.5 1 ; 

1 0 
0 1 

C =  ; C ~ =  
0 0 
0 0 

E1 = [0.1 1]; 

E2 = 0.9; 

14 0] 
-0.5 -0.6 

0 0 
0 0 
1 0 
0 1 

Zld = [0.O5 0.6] 

E3=0.4. 

We consider the following quadratic cost function: 

// g ( t )  = ( x r ( t ) O z ( t )  + uT(t)Ru(t))dt 

where 

Q= [30 20]" R=0.1. 

If the state is measurable, we can possibly design a memorytess static state 
feedback comroller. First of all, we determine if the LMIs (4.6)-(4.7) are feasible 
for the above given system parameters. Then we can synthesize the feedback gain 
matrix K based on LMI (4.12) if LMIs (4.6)-(4.7) are feasible. Note however, we 
have the freedom in selecting the matrix N in LMI (4.7). 

First, we select N as a matrix whose columns form an orthonormal basis of 
the null space of [B T EAT]. 

Simulation using Matlab LMI Control Toolbox [5] shows that  LMIs (4.6)-(4.7) 
are feasible for our uncertain system, and we obtain the following variables from 
the feasibility test: 

0.0187 1.0885 ; 0.1195 0.9826 

e = 0.4181. 

With the obtained variables, it is straightforward to get a suitable memoryless 
static state feedback controller as follows: 

u(t) = [-0.4667 - 7.3572]x(t) 

which guarantees that  the cost function satisfies (4.8). 

(6.1) 



Time-delay Systems 299 

Alternatively, we choose [20] 
N = 0 -0 .2  

0 0.5 

whose columns also form a basis of the null space of [B T ET]. 
Simulation shows that  for memoryless static state feedback control, we now 

have 

-0.0241 1.2132 ' 0.1544 1.2817 

e = 0.4987 

while the controller is given by 

u(t) = [-0.0890 - 8.04391x(t). (6.2) 

Example 2. Consider the system (5.1)-(5.4) with the given parameters: 

0.5 1 ; -0 .5  -0 .6  ; B =  1 

[o] [o] [o] 
1 ; H i =  1 ; H2= 1 ; H3= 1 

E1 = [0.1 1]; Edl = [0.05 0.6]; Ed2 = 0.6 

E21 = E22 ---- E23 -" 0.9; E3 = 0.4. 

The following quadratic cost function is given by: 

/o J( t )  = (xT(t)Qx(t) + uT(t)Ru(t))dt 

where 

3 0 ]  R 0.1. 
Q =  0 2 ; = 

Simulation using shows that  LMIs (5.8)-(5.9) are feasible for our uncertain 
system, and we obtain the following variables from the feasibility test: 

X_I  = [ 1.4936 0.0019] 
0.0019 1.0926 [1 00  =[01  0 0001 ] 

y - 1  = -0.0823 0.9641 Y2-1 -0.0017 0.2054 

e = 0.1320. 

With the obtained variables, it is straightforward to get the controller gain 
matrix 

g = [-1.3548 - 9.8765]. 
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Therefore, a suitable memoryless static state feedback controller is given as fol- 
lows: 

u(t) = [-1.3548 - 9.8765]x(t) (6.3) 

which guarantees that the cost function satisfies (5.10). 

7 Conclusion 

We consider the robust guaranteed cost control problem for linear time-delay sys- 
tems with quadratically constrained uncertainty. Our uncertainty description is 
more general than norm-bounded time-varying uncertainty and linear fractional 
transform type uncertainty descriptions. We show that  the feasibility of LMI 
(3.27) guarantees the solvability of the corresponding robust performance analy- 
sis problem while the feasibility of a pair of LMIs (4.6)-(4.7) insures the existence 
of a memoryless static state feedback controller which solves the addressed ro- 
bust guaranteed control problem. Once the solvability issue is determined, it is 
then straightforward to construct a family of desired memoryless static state 
controllers numerically. 
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Abstract. This chapter deals with the stabilization of linear continuous- 
time systems with time-delay in the state and subject to bounded in- 
puts. A saturated state feedback control law is used. Sufficient condi- 
tions addressing the local stabilization of such systems are proposed. 
The methodology consists in determining some domains of safe admissi- 
ble states for which the stability of the saturated closed-loop system is 
guaranteed. 

1 I n t r o d u c t i o n  

In practical control problems, many constraints have to be treated in or- 
der to design suitable controllers operating in real environment. Hence, controls 
and states of practical systems are bounded and therefore subject to amplitude 
saturations. 

The stabilization of linear systems with saturating actuators has been widely 
investigated in the last years: see, for example, [1] and references herein. The 
problems of local and global stabilization for such a class of systems have been 
studied. Some of these results have been extended to the case of linear systems 
with delayed state and then sufficient conditions for state feedback stabilization 
have been given, for example, in [3], [5], [18] (independent of the size of delay) or 
in [3], [16] (dependent of the size of delay). The stability conditions presented in 
these papers are mainly based on the use of matrix measure, complex Lyapunov 
equations, or still Razumikhin-type theorems. For an outline concerning the last 
results on the delay systems see, for example, [9] and references herein, or still the 
different papers on the subject in the 13th World IFAC Congress (San Francisco, 
USA - July 1996). 

In this chapter, we consider a linear continuous-time system with saturat- 
ing controls and with time-delay in the state. The main objective of this chapter 
consists in determining some domains of safe admissible states for which the sta- 
bility of the saturated closed-loop system is guaranteed. The approach is based 
on a Lyapunov-Krasovskii technique for analysing the uniform asymptotic sta- 
bility of solutions of functional differential equations. The main results consist in 
proposing simultaneously delay-independent sufficient conditions for the asymp- 
totic stability of the closed-loop system via memoryless static state feedback and 
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a suitable domain of safe admissible states. These conditions are given in terms 
of solutions of appropriate finite dimensional algebraic Riccati equations. The 
suitable associated domain is obtained from an optimization linear program. To 
obtain these results, the saturated closed-loop system is written as a convex 
combination of matrices belonging to a convex polyhedron of matrices. 

The chapter is organized as follows. Section 2 presents the considered system 
with its hypotheses and states the objectives. Section 3 proposes a solution when 
saturation of controls has to be avoided. Section 4 addresses the problem when 
controls are allowed to saturate. In Section 5, a numerical example, borrowed 
from the literature, illustrates the results. Finally, Section 6 gives some conclud- 
ing remarks. 

Nota t ions .  Throughout this chapter, the following notations are used. Re de- 
notes the set of real numbers, Re + is the set of non-negative real numbers, Re n 
denotes the n dimensional Euclidean space, and Re nxm denotes the set of all 
n × m real matrices. The notation X > Y (respectively, X > Y), where X and Y 
are symmetric matrices, means that the matrix X - Y is positive semi-definite 
(respectively, positive definite). For a real matrix A, A T and A(i) denote the 
transpose of matrix A and the ith row vector of matrix A respectively. In de- 
notes the identity matrix in Re ~×n. Amax(P) and Amin(P) denote respectively 
the maximal and minimal eigenvalues of matrix P. Cr = C([-r,  0], Re n) denotes 
the Banach space of continuous vector functions mapping the interval [--T, 0] 
into Re n with the topology of uniform convergence. The following norms will 
be used: 1[ " [I refers to either the Euclidean vector norm or the induced matrix 
2-norm ; [I¢ [le= sup-~<t<0 I[ ¢(t) [[ stands for the norm of a function ¢ E Or. 
Moreover, we denote by C~ the set defined by C~ = {¢ E C~ ; [[ ¢I[c< v}, where 
v is a positive real number. 

2 Prob lem s t a t e m e n t  

Consider the linear time-delay system described by: 

~(t) = Ax(t) + Adx(t - r) + Bu(t) (2.1) 

with the initial condition 

x(to + O) = ¢(0), V0 e I - r ,  0], (to, ¢) E Re + × Cr v (2.2) 

where x(t) E Re n is the state, u(t) C Re m is the control input, r is the time- 
delay of the system, A, Ad, B are known real constant matrices of appropriate 
dimensions. Furthermore, pair (A, B) is assumed to be stabilizable. 

The vector u(t) is assumed to take values in the compact set f2 E Rein: 

= {u E Re'n;-Uo _< u < uo} (2.3) 

with uo component-wise positive vector of Re m. 
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From (2.3), the saturation function sat(Kx(t)), K E Re re×n, is defined as 

sat(Kx(t)) = [ sat(K(a)x(t)) ... sat(K(m)X(t)) ]T (2.4) 

with for i = 1, ...,m: 

{ -u0(i) if K(i)x < -Uo(i) 
sat(K(i)x(t)) = K(i)x if -u0(i) _ K(i)x <_ Uo(i) 

u0(i) if K(i)x > Uo(i) 

By implementing such a saturated control law, the closed-loop system is : 

(2.5) 

2(t) = Ax(t) + Adx(t - T) + Bsat(Kx(t))  (2.6) 

When the controls do not saturate, that is, for all x(t) E S(K,  no) described as 
follows: 

S(K,  uo) = {x E Ren;-no <_ K x  < uo} (2.7) 

system (2.6) admits the linear model: 

J:(t) = (d + Bg)x ( t )  + AdX(t - T) (2.8) 

The aim of this chapter is to investigate conditions for closed-loop stability 
of the saturated system (2.6) via memoryless state feedback. The approach de- 
veloped is mainly based on the Lyapunov-Krasovskii Theorem [4], [8]. However, 
some results based on the Razumikhin's approach are discussed. No assumption 
on the stability of the open-loop system is made. When the open-loop system 
(u = 0) is stable the global stabilization can be studied (see [14] and references 
therein). 

First the linear model (2.8) is considered: a state feedback matrix K and a set 
of safe admissible states (domain of linear behavior) guaranteeing the asymptotic 
stability of the system are then determined. 

Next, considering the saturated system (2.6), a domain of nonlinear behavior 
is determined in order to guarantee the asymptotic stability of the system. 

3 C l o s e d - l o o p  s t a b i l i t y  w i t h o u t  s a t u r a t i o n s  

This section addresses the determination of a local domain of stability in 
which the control law is not saturated. In other words, a local domain included 
in S(K,  uo) and in which the model (2.8) is valid has to be found. 

L e m m a l .  Assume that for two Lyapunov functions the inequality Vl(X) _< 
V2(x) <_ co holds. Then the set D1 contains the set ~)2, where the sets Di, i = 1,2 
are defined by 

Di = {x e Ren; Vi(x) < co} 
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P r o p o s i t i o n  2. Given symmetric and positive definite matrices Q and R, i/ 
there exist two symmetric and positive definite matrices P and S solutions of 

A T p  + P A  + P A d S - 1 A T p  - P B R - I B T p  + S + Q = 0 (3.1) 

then system (2.8) is asymptotically stabiIizable by the state feedback matrix 

K = - R - 1 B T p  (3.2) 

for all initial condition ¢ e B(a) defined by 

B(a) = {¢ e c~; II ¢ I1~< ~} 
(3,3) 

~t 
with a = ~,,o.(P)+r~.~..(s) 

where the scalar ~ corresponds to the largest ellipsoid 7P(P,#) = {x E 
Re~; x T p x  < I.t} contained in 3(K, Uo). 

Proof. Let us introduce the following Lyapunov functional candidate: 

V(xt) = x(t)T px(t)  + z(o)T sx(O)dO (3.4) 

where P and S are solutions of the Pdccati equation (3.1). Furthermore, one 
gets: 

8, II x( t ) I1~< y(x~) < ~ II x~ II~ (3.5) 

where fll = )~rnin (P) and ~2 = )~maz (P) + T)~max (S). The time-derivative of 
V(xt) is given by: 

"iz(xt) = ~(t)Tpx(t) + z(t)Tp~(t) + x(t)TSx(t) 
- x ( t  - ~-)TS~(t  - r )  

Then from (3.1) and (3.2), along the trajectories of system (2.8) it follows: 

~Z (Xt) = --x(t)T Qx(t) - x(t)T p B R - 1 B T  px(t)  
-[x(t  - T) -- S-1ATpx(t)]TS[x(t - T) -- S-1ATpx(t)] 

Hence, it follows that there exists a positive scalar f13 such that one gets V(xt) <_ 
-f13 [] x(t) ][2< 0, and therefore V(xt) < V(xto), provided that the linear model 
(2.8) remains valid. According to Lemma 1, it is clear from (3.5) that both: 

- V¢ E B(a) it follows ¢ e/:)(V,#), which is the domain defined by / ) (V,#)  = 
{x e Re'*; V(xt) < Iz}. 

- Vxt e/:)(V, pt) it follows x(t) e/:)(P, #) = {x e Ren; x t p z  5 #, # > 0}. 
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Fhrthermore, since V(xt) < V(xto), from (3.5), it follows that Y¢ E B(a) one 
gets x(t) E 7)(P, #). Thus, if we determine the largest ellipsoid/)(P, #) = {x E 
Re~; x tPx  < #, it > 0} included in S(K,  Uo), it follows that V¢ E B(a) = {¢ E 
¢ ;11 ¢ < G} with a = ~ ,  x(t) E S(K,  uo). Then, for any initial condition 
in B(a) the linear system (2.8) is valid. Hence, using the Lyapunov-Krasovskii 
functional approach (see the first chapter of this monograph), for any initial 
condition in B(a) the local asymptotic stability of system (2.8) is guaranteed. 

[]  

Then the following Algorithm can be stated. 

A lgor i thm 4 1. Given symmetric and positive definite matrices Q and R, 
compute solutions P and S of (3.t). 

,it 2 . 
2. Compute It = m!n Yi where ~ --- pO(fi,~._ is the solution of the optimiza- 

K ( 1 )  K ( i  ) 

tion program: 
max x T p x  = ~i 

subject to K(i)x <__ u0(i) 

t t 3. Compute a = ~m~,(P)+~.~.~(s)" 

It is worth to notice that the set 7)(V, #) = {x E Ren; V(xt) _< #} obtained 
from Step 2 is a positively invariant and strictly contractive set [6] with respect to 
the trajectories of system (2.8). Nevertheless, a better way to determine a set of 
safe admissible states would consist in finding the maximal set/)(V, p) (defined 
above) with # = rain ~ where ~ would be the solution of the optimization 

i 
program: 

max V(xt) = ¢i 
subject to K(0x _~ u0(0 

However such a computation is very hard and no simple solutions are really at- 
tainable at the current time. 

Since one gets: 

V¢ e/~(~) then xt E 7)(V, #) and x(t) E I)(P, #) (3.6) 

it could be interesting to know if the ellipsoid T)(P, #) is a positively invariant 
and contractive set for system (2.8). In this sense, based on the Razumikhin's 
approach the following proposition can be stated. 

P r o p o s i t i o n 3 .  Given symmetric and positive definite matrices Q and R, if 
there exist two symmetric and positive definite matrices P and S solutions of 
(3.1) then system (2.8) is asymptotically stabilizable by the state feedback K,  
defined in (3.2), for all initial condition ¢ E 79(P, it) = {x C Ren;xTpx  < it}, 
where it is defined as in Step 2 of Algorithm 4. Hence, :D(P, #) is a positively 
invariant and contractive set for system (2.8). 
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Proof. Compute the time-derivative of the quadratic Lyapunov function V(x) = 
x T p x  along the trajectories of system (2.8). Then from (3.1) and (3.2) it follows: 

?(x)  = -x( t )T(Q + P B R - 1 B T p  + S)x(t) + 2x(t)TpAdx(t -- 7") 
-x( t )T  pAdS-1AT px(t)  

Let us first consider the following term 

[x(t - r) - S-1AT px(t)]T S[x(t - r) - S-1AT px(t)] >_ 0 

which is equal to 

x(t - T)T Sx(t -- T) -- 2x(t)T pAdX(t -- 7") + x(t)T pAdS-1AT px(t) > 0 

therefore it follows: 

2x(t)T pAdX(t -- V) -- x(t)T pAdS-1AT px(t) < x(t - T ) T  S x ( t  -- T) 

Hence the time-derivative of V(x) satisfies: 

~(x) < -x( t )T  (Q + P B R - 1 B T  p + S)x(t) + x(t - v)T Sx(t  -- T) 

From the use of the Razumikhin's Theorem [4], it is assumed that there exists 
a positive number q > 1 such that 

x(t - T)T px( t  -- T) < q2x(t)T px(t) 

which is equivalent to the existence of ~ > 1 such that 

x(t  - r )T  Sx( t  - <  2x(t)T Sx( t )  

Then concerning V(x) it follows: 

~(x) <_ (-Am~u( S-½ (Q + P B R - 1 B T  p + S)S-½ ) + t~2)x(t)T Sx(t) 

Moreover, remark that Q + P B R - 1 B T p  + S > S since Q and S are positive 
definite. Therefore it follows that 

S-½(Q + PBR-IBTp + S)S-½ > 1 

and thus the condition )~min (S- ½ (Q + P B R  - 1 B T p  + S ) S -  ½) > 1 follows. 
Therefore if Amin(S-½(Q + P B R - 1 B T p  + S)S -½) > 1, there exists ~ small 
enough such that r~(x) < 0. Model (2.8) being valid only in S(K, uo), since the 
choice of # > 0 follows Step 2 of Algorithm 4, one gets 79(P, #) C $(K, uo) and 
therefore V(x) < 0, for an), x 6 79(P, #). The set D(P, tt) is a positively invariant 
and contractive set for system (2.8). D 
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Propositions 2 and 3 mean that  the function V(xt), defined in (3.4), and 
the quadratic function V(x) = xTpx  are both Lyapunov functions for system 
(2.8). The first one is based on the Lyapunov-Krasovskii approach, whereas the 
second one uses the Razumikhin's approach. Proposition 2 allows to conclude 
that  D(P, #) is a domain of stability, whereas Proposition 3 allows to conclude 
that  D(P, #) is a positive invariant and contractive set. 

In the case r = 0, one can consider the term Adx(t) as a norm-bounded 
uncertain term, that  is, Ad = DFE~ where F is the parameter uncertainty 
satisfying FTF < 1. Then to stabilize system (2.1) one can solve equation (3.1) 
by considering S = e-tin,  c > 0, that  is, one has to determine e and P solutions 
of [1@ 

A T p  + PA + ePAdATp - P B R - 1 B T p  + e-l ln + Q = 0 

Furthermore, in the case r = 0, the following corollary to Propositions 2 or 
3 can be stated. 

C o r o l l a r y  4. Given symmetric and positive definite matrices Q and R, if there 
exist two symmetric and positive definite matrices P and S solutions of equation 
(3.1) then system (2.8) is asymptotically stabilizable by the state feedback K,  
defined in (3.2), for all initial condition in D(P,#) = {x E Ren;xTpx < I-t}, 
where # is defined as in Step 2 of Algorithm 4. Hence, the set D( P, #) C S( K, uo) 
is a positively invariant and contractive set for system (2.8). 

Proof. It suffices to compute the time-derivative of the quadratic Lyapunov func- 
tion V(x) = xTpx  along the trajectories of system (2.8) in which r = 0. Then 
from (3.1) and (3.2) it follows 

?(x) = - xT (Q  + P B R - i B T p ) x  
--xT(I~ -- S-1ATp)Ts(I~  - S -1ATp)x  

Model (2.8) being valid only in S(K, no), since the choice of p. > 0 follows Step 
2 of Algorithm 4, one gets D(P, #) C S(K, no) and therefore V(x) < O, for any 
x e D(P, #). 

4 Closed-loop stability with saturations 

To develop the results of this section, the saturated system (2.6) is written 
under an equivalent form. Let us write the saturation term as: 

sat(Kx(t)) = D(c~(x))Kx(t) ; D(a(x)) e Re mxm (4.1) 

where D(c~(x)) is a diagonal matrix for which the elements a~(x) satisfy for 
i = 1, ..., m: 

- u°(il if K(i)x < -no(i) 

a~(x) = 1 if -no(i) <_ K(i)x < no(i) (4.2) 
~o(i~ if K(~)x > Uo(i) K(1)x 
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and 

0 < ai(x) < 1 

System (2.6) can then be written in the equivalent form: 

(4.3) 

2(t) = (A + BD(a(x))K)x(t)  + Adx(t -- r) (4.4) 

Recall that  for a given stabilizing state feedback K it is generally not possible 
to determine analytically the region of attraction of the origin. Nevertheless, the 
determination of either a positively invariant and contractive set [2] or a domain 
of stability [10] for system (2.6) may be an interesting way to approximate it. 

The determination of such a set for systems (2.6) or (4.4) gives lower bounds 
for ai ,  i = 1, ...,m. Thus, if this set is denoted So, it follows that  for any x(t) 
belonging to So, one may define a lower bound for ai(x) as: 

(c~i(X))min = min{ai(x) ; x E So} (4.5) 

Therefore, Vx(t) e So, the scalars ai(x), i = 1,. . . ,m, satisfy (cq(x))min ~_ 
ai(x) < 1. From a convex linear combination of matrices Aj defined by [12]: 

Aj = A + BD(Tj)K (4.6) 

where D(Tj) is a diagonal matrix of positive scalars 7j(i), for i = 1, ..., m, which 
arbitrarily take the value 1 or (a~(x))min, system (2.6) may be written, for any 
z( t )  e SO, as: 

2.~ 

2(t) = E Aj(x(t))Ajx(t) + Adx(t -- T) (4.7) 
j = t  

with 
2 n~ 

= 1 ,  > 0 
j=l 

(4.8) 

Note that  the matrices Aj are the vertices of a convex polyhedron of matrices. 
Note also that  (ai(X))min, i = 1, ..., m, define the polyhedral set 

S(K,u~)  = {x e R e n ; - u ~  < K x  ~ u~}" (4.9) 

where every component of vector u~ is defined by u01~) • (a~(x))mi, ' Z = 1, ..., m. This set 
contains So and corresponds to the maximal set in which model (4.7) represents 
system (2.6) or (4.4). 

Proposition 5. Assume that matrices P and S are solutions of (3.1) and K is 
given by (3.2). i f  for all j = 1, ...,2 m, one gets: 

- Q + KT(R  - RD(~/j) - D(~/j)R)K < 0 (4.10) 
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then system, (2.6) is asymptotically stabilizable by the state feedback K for all 
initial condition ¢ E 13(5) defined by 

B(~) = {¢ e c~; II ¢ I1~___ 5) 

with 5 = ,  ~' - -  
(4.11) 

where the scalar p corresponds to the largest ellipsoid l)(P,p) = {x E 
Ren; x T p x  < p} contained in S(K,  u~). 

Proof. Using the same Lyapunov functional as defined in (3.4) and considering 
its time-derivative along the trajectories of system (4.7) it follows 

2 r n  

f /(xt) = E A j  (x )x ( t )T(ATp + PAj)x( t )  
j = l  

+2x(t)TpAdX(t  -- T) + x(t)TSx(t)  -- x(t  -- v )TSx( t  -- 7) 

From (4.8), (3.1), (3.2) and from the convexity of function V(xt)  it follows that: 

2"* 

~(~) = Z ~(~)~(~,) 
j = l  

where ~ ( x t )  is defined by: 

?j(z , )  = - ~ ( t ) T Q ~ ( t )  + ~ ( t ) T K T ( R  -- R D ( ~ )  - D ( ~ ) n ) K ~ ( t )  
- [ z ( t  - 7-) - S - ~ A ~ P x ( t ) ] r S [ z ( t  - r )  - S - ~ A T p x ( t ) ]  

Hence, if condition (4.10) holds, then there exists /34 > 0 such that V(xt)  < 
-~4  II x(t) I1~< 0, provided that model (4.7) is valid. The end of the proof of 
Proposition 2 can be mimicked. For any initial condition in the ball 13(5), the 
trajectories remains in $(K,  u~) and the model (4.7) is valid. Hence, for any 
initial condition in the ball B(5) the local stability of system (2.6) is guaranteed. 

[] 

Notice that if we consider the ellipsoid T~(P, p), we can define the resulting 
~i(x)m~. as 

Uo(i) 1) , i = 1, ...,m (4.12) 

¥ - -  

Therefore the definition of vectors "~j, j = 1, ..., 2 m, follows. A way to compute 
the suitable vectors ~j and the positive scalar 5 is now proposed. 

A l g o r i t h m  5 1. From the solution obtained in Algorithm ~ compute si = 
uo(~) ................... i = 1, ...,m. One gets si >_ 1, i = 1, ... ,m. 

2. Choose an increment Aw and iterate u; from 1. 
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3. Compute the 2 m possible combinations of vector ~/j from 7j(i) = 1 or 
min(~,  1), i = 1, ..., m.  Test if condition (4.10) holds. 

4. I f  condition (4.10) is ve~'ified, w is a suitable value then increment it and go 
to the step above. Otherwise stop. 

_ _  2 5. Among the suitable values of w select Wmax = maxw and compute p - wrn~ #. 
6. Compute 5 = P )~m..(P)÷rA,~.®(S)" 

As in section 3, since 

V¢ e B(5), xt e ~P(V, p) and x(t) e •(P, p) (4.13) 

the following proposition can be stated, based on the Razumikhin's approach, 
to establish in what case the ellipsoid :D(P, p) is a positively invariant and con- 
tractive set for system (2.6). 

P ropos i t ion  6. Assume that two symmetric and positive definite matrices P 
and S are solutions of (3.1) and K is given by (3.2). I f  for all j = 1, ..., 2 m 
condition (4.10) holds, then system (2.6) is asymptotically stabilizable by K ,  
defined in (3.2), for all initial condition ¢ e ~(P ,p)  = {x e R e n ; x T p x  < p}, 
where p is defined by Step 5 of Algorithm 5. Furthermore the set ~(P,  p) is a 
positively invariant and contractive set for system (2. 6). 

Proof. Compute the time-derivative of the quadratic Lyapunov function V(x)  = 
x T p x  along the trajectories of system (2.6). Then from (3.1) and (3.2) it follows: 

2 m 

f /(x(t))  = E A j ( X ) x ( t ) T  (AT p + PAj)x ( t )  + 2x(t)W pAdx( t  -- T) 
j = l  

From (4.8), (3.1), (3.2) and from the convexity of function V(x) it follows that : 

2,., 

= Z 
j = l  

where ~ ( x ( t ) )  is defined by: 

(x(t) ) = - x ( t ) r  Qx(t) 
--x(t)T Sx(t)  -- x ( t ) T p A d S - 1 A T p x ( t )  + 2x( t )TpAdx( t  -- T) 

+ x ( t ) T K T ( R  -- RD(Tj)  - D ( T j ) R ) g x ( t  ) 

Thus, one gets: 

< - x ( t ) V Q x ( t )  - x ( t ) r s ~ ( t )  + ~ ( t  - r ) T s ~ ( t  - T) 
+ x ( t ) T K T ( R  -- n D ( ' y j )  - D ( ~ / j ) R ) K x ( t )  

Then if condition (4.10) holds for all j = 1, ..., 2 m, therefore since S is positive 
definite it follows that 

Q + S - K T ( R  - RD('yj) - D(~/j)R)K > S 
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therefore 

S-½(Q + S - KT(R  - RD(~j) - D(?j)R)K)S-½ > 1 

and the condition Amin(S-½(Q + S - KT(R  - RD(Tj) - D(Tj)R)K)S-½ ) > 1, 
Vj = 1, ..., m, follows. Furthermore, by mimicking the proof of Proposition 3 one 
can conclude that by Razumikhin's approach there exists a sufficiently small 

> 1 satisfying x(t - T ) T S x ( t  - -  T) < t~2x(t)TSx(t) such that ~ ( x )  < 0. 
Moreover, model (2.6) is valid only in S(K, uS). Since p > 0 is chosen such 
that D(P,p) C S(K,u~),  by using Razumikhin's approach the same type of 
reasoning can be applied to conclude that ~ (x )  < 0, and therefore l~(x) < 0, 
for any x E Z)(P,p). Thus, V¢ E :D(P,p), one gets x(t) E :D(P,p), Vt > to. The 
set T)(P, p) is a positively invariant and contractive set for system (2.6). [] 

The objective of Proposition 6 was to express the possible links between the 
Lyapunov-Krasovkii and the Razumikhin's approaches for a system with satu- 
rating controls as system (2.6). Hence, it is clear that other sufficient conditions 
may be found in order to guarantee the positive invariance of D(P, p) for system 
(2.6). 

In the case T = 0, the following corollary of Proposition 5 can be stated. 

Corol lary  7. Assume that matrices P and S are solutions of (3.1) and K is 
given by (3.2). System (2.6) is asymptotically stabilizable by the state feedback 
K in 1D(P,p) = {x E Ren;xrpx  <_ p} if, for aUj = 1, ...,2 m, one gets: 

- Q  - (In -- S - IATp)Ts ( In  - S -1ATp)  (4.14) 
+KT(R - RD(Tj) - D(Tj)R)K < 0 

Proof. Using the Lyapunov function V(x) = x(t)Tpx(t) and considering its 
time-derivative along the trajectories of system (4.7) in which r = 0, it follows: 

2"* 

V(x(t)) = ~A~(x )x ( t )T (ATp  + PAj)x(t) + 2x(t)TpAdx(t) 
j = l  

From (4.8), (3.1), (3.2) and from the convexity of function V(x) it follows that : 
2 m 

= 

j = l  

where ~/'j(x(t)) is defined by: 

~(x( t ) )  = -x(t)TQx(t)  
- - x ( t ) T [ I .  -- S - 1 A T p x ( t ) ] T s [ I .  - S - 1 A T p ] x ( t ) ]  

+=(t)TKT(R -- RD(Tj) - D(Tj)R)Kx(t) 

Hence, if condition (4.14) holds, then ~(x(t))  < 0 and therefore ~/(x(t)) < 0 for 
all x E :D(P, p). In this case, the set :D(P, p) is positively invariant and contractive 
for system (4.7). Thus, the local stability of system (2.6) is guaranteed in T~(P, p). 

o 
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5 N u m e r i c a l  e x a m p l e  

Consider the numerical example borrowed from [17]. System (2.1) with con- 
straint (2.3) is described by the following data: 

A=[1151 [o 1] 
0.3 - 2  ; Ad "= 0 0 

B=[10] 
1 ; u0 = 15; T = I  

Thenbychoos ingR=landQ=[2  1 ]  1 3 one gets: 

-o.0537 1.3102 ; S = 0.0043 

Then from (3.2) the resulting state feedback matrix is 

K : [ -2 .3335 -0.7734] 

0.0043 ] 
2.9990 

From Proposition 3 since 

A t~-½ minv~" (Q + S + PBR-1BTp)s -½) < 1 

we can conclude that the set :D(P,/~) obtained is a positively invariant set with 
respect to the trajectories of system (2.8). 

Moreover, in the linear case (that is, in the Algorithm 4 case) the results 
obtained here can be compared to those of Theorem 2 in [7]. The comparison 
can be made in terms of size of domains of safe admissible states. The results 
given in [7] are based on the use of the Razumikhin's approach. Then, let us first 
consider the symmetric and positive definite matrix P0 solution of 

(A + BK)T po + Po(A + BK) = -I2 

One obtains: 
[ 0.0247 -0 .0253]  

P ° =  -0.0253 0.2373 

5.1 Closed-loop stability without saturations 

By applying algorithm 4, it follows: 

# = 9.3328 ; a = 2.1639 

Thus for any initial condition belonging to B(a) the resulting trajectories of the 
closed-loop system are those of system (2.8) since they remain in S(K, Uo). Fur- 
thermore the asymptotic stability Of system (2.8) is guaranteed. 
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By applying Step 2 of Algorithm 4 in order to compute the maximal ellipsoid 
D(Po,#o) = {x E Re2;xTPox <_ #0} included in S(K, uo), one obtains #0 = 
0.8394. From Theorem 2 in [7], domain D(Po,#o) is positively invariant and 
contractive for system (2.8), that is, the time-derivative of Vo(x) = xTPox is 
strictly negative along the trajectories of system (2,8), if: 

: , . , .  ( Q o ) 
II PoAd I1< "~ V 

In the present case, it follows: 

Amin ( Qo ) 
' " ' " ' "  - 0 . 1 5 0 3  ]! PoAd [I = 0.0354 ; 2 V 

It clearly appears that the domains of safe admissible states is smaller than that 
obtained from Proposition 2 or Proposition 3. 

5.2 Closed- loop s tabi l i ty  wi th  sa tu ra t ions  

Next, by applying Algorithm 5, one obtains: 

Wmaz = 3.1208 ; p = 90.8941 ; 5 = 21.0751 

One gets the following corresponding lower bound a(x)min for the saturation 
term: 

a(X)min = 0.3204 

which generates the set 

,.q(K,u~) = {x e Re2;-46.8115 < [ -2.3335 -0.7734 ] x _< 46.8115} 

We obtain a domain of safe initial conditions B(5), larger than Y(a), such that 
the trajectories of the closed-loop saturated system (2.6) remain confined in the 
domain S(K, u~). The local asymptotic stability of system (2.6) is guaranteed. 

Proposition 6 may also be applied in order to verify that D(P, p) is a positively 
invariant and contractive set for system (2.6). 

6 C o n c l u d i n g  r e m a r k s  

- The local stabilization of linear continuous-time systems with saturating con- 
trols and time-delay in the state was addressed. The approach was based on 
a Lyapunov-Krasovskii technique. Some domains of safe initial conditions 
were determined from the solution of an algebraic Riccati equation. Using 
the Razumikhin's approach some domains of positive invariance and contrac- 
tivity were determined. Hence, some links between the Lyapunov-Krasovskii 
and Razumikhin's approaches were discussed. 
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- The conservativeness of the results proposed in this chapter is mainly due 
to the representation chosen for the saturated system. Indeed, all the tra- 
jectories of system (2.6) can be represented by those of system (4.7) only 
in S(K,  u~). Hence, all the conditions obtained from this representation are 
only sufficient. 

- The presented results can be extended to the multiple delays case. Consider 
the following system 

r 

~(t) = Ax(t) + E A d i x ( t  - T,) + Bu(t) (6.1) 
i = l  

with the initial condition 

x(t0 + e) = ¢(e), Ve e [-~, 0] 
with ~ = max r~(t0, ¢) E Re + ×Cr v (6.2) 

i----1, . . . , r  

Hence, the following Riccati equation would be considered : 

A T p  + P A  - P B R - 1 B T p  + E ( P A d ~ S [ I A d T p  + S,) + Q = 0 (6.3) 
i----1 

which is associated to the following Lyapunov functional: 

V(xt) = x(t)T px(t)  + x(O)T Six(O)dO (6.4) 
i = 1  r~ 

- In the time-varying delay case, that is, in the case where the delay satisfies 

O < v(t) <_ rm,= and ~ <_ ( < l 

the algebraic Riccati equation (3.1) becomes: 

A T p  + PA  - P B R - 1 B T p  + P A d S - 1 A T p  + :S + Q : 0 (6.5) 

Then the following Lyapunov function can be used: 

1 ~ t - 
x(O)TSx(O)dO (6.6) V(xt) = x(t)T px(t)  + ~ _  ~ r(t) 

In [11], the authors study the quadratic stabilization of continuous-time sys- 
terns with time-varying delay and norm-bounded time varying uncertainties 
but without control constraints. They use a similar algebraic equation to 
that defined in (6.5). 
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- In this chapter, the considered control law was memoryless. Nevertheless, 
the desired control law may be expressed under the form: 

u(t) = sat(Kx(t)  + Kdx(t - r)) (6.7) 

In this case the considered Riccati equation would be formulated as: 

A T p  + P A  - P B R - 1 B T p  + S + Q (6.8) 
+P(Ad + BKd)S- I (Ad  -b B K d ) T p  = 0 

- Some results can be obtained by considering the quadratic Lyapunov func- 
tion V(x(t))  = x( t )Tpx( t )  where matrix P is solution of 

(A + Ad)Tp + P(A + Ad) - P B R - 1 B T p  + Q = 0 (6.9) 

for given symmetric and positive definite matrices Q and R. In this last case, 
the Razumikhin's approach has to be used [13]. Some positively invariant and 
contractive domains for system (2.6) can be obtained from the solution P. 

- When the open-loop stability properties allow it, the global asymptotic sta- 
bility of the saturated closed-loop system (2.6) can be investigated. Hence, 
one can show that [14]: Given a symmetric and positive definite matrix Q, if 
there exist two symmetric and positive definite matrices P and S solutions 
of 

A T p  + PA + P A d S - 1 A T p  + S + Q = 0 (6.10) 

then system (2.6) is globally asymptotically stabilizable by the state feedback 

K = -D('~')BTp 

where D(-),) is a diagonal matrix with positive diagonal elements. One can 
prove that the time-derivative of the Lyapunov functional V(xt)  defined in 
(3.4) is negative for all x E Re n, x ~ 0. 
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