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Feedback control systems
wherein the control loops are
closed through a real-time
network are called net-
worked control systems
(NCSs) [1]-[4]. The defining

feature of an NCS is that information
(reference input, plant output, control
input, etc.) is exchanged using a net-
work among control system compo-
nents (sensors, controller, actuators,
etc.). Fig. 1 illustrates a typical setup
and the information flows of an NCS.
The primary advantages of an NCS are
reduced system wiring, ease of system
diagnosis and maintenance, and in-
creased system agility.

The insertion of the communication network in the feed-
back control loop makes the analysis and design of an NCS
complex. Conventional control theories with many ideal as-
sumptions, such as synchronized control and nondelayed
sensing and actuation, must be reevaluated before they can
be applied to NCSs. Specifically, the following issues need to
be addressed. The first issue is the network-induced delay
(sensor-to-controller delay and controller-to-actuator de-

lay) that occurs while exchanging data among devices con-
nected to the shared medium. This delay, either constant
(up to jitter) or time varying, can degrade the performance
of control systems designed without considering the delay
and can even destabilize the system. Next, the network can
be viewed as a web of unreliable transmission paths. Some
packets not only suffer transmission delay but, even worse,
can be lost during transmission. Thus, how such packet
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dropouts affect the performance of an NCS is an issue
that must be considered. Another issue is that plant
outputs may be transmitted using multiple network
packets (so-called multiple-packet transmission), due to
the bandwidth and packet size constraints of the net-
work. Because of the arbitration of the network me-
dium with other nodes on the network, chances are
that all/part/none of the packets could arrive by the
time of control calculation.

The implementation of distributed control can be
traced back at least to the early 1970s when
Honeywell’s Distributed Control System (DCS) was in-
troduced. Control modules in a DCS are loosely con-
nected because most of the real-time control tasks (sensing,
calculation, and actuation) are carried out within individual
modules. Only on/off signals, monitoring information, alarm
information, and the like are transmitted on the serial net-
work. Today, with help from ASIC chip design and significant
price drops in silicon, sensors and actuators can be
equipped with a network interface and thus can become in-
dependent nodes on a real-time control network. Hence, in
NCSs, real-time sensing and control data are transmitted on
the network, and network nodes need to work closely to-
gether  to perform control tasks.

Current candidate networks for NCS implementations
are DeviceNet [5], Ethernet [6], and FireWire [7], to name a
few. Each network has its own protocols that are designed
for a specific range of applications. Also, the behavior of an
NCS largely depends on the performance parameters of the
underlying network, which include transmission rate, me-
dium access protocol, packet length, and so on.

There are two main approaches for accommodating all of
these issues in NCS design. One way is to design the control
system without regard to the packet delay and loss but design
a communication protocol that minimizes the likelihood of
these events. For example, various congestion control and
avoidance algorithms have been proposed [8], [9] to gain
better performance when the network traffic is above the limit
that the network can handle. The other approach is to treat the
network protocol and traffic as given conditions and design
control strategies that explicitly take the above-mentioned is-
sues into account. To handle delay, one might formulate con-
trol strategies based on the study of delay-differential
equations [10]. Here, we discuss analysis and design strate-
gies for both network-induced delay and packet loss.

This article is organized as follows. First, we review some
previous work on NCSs and offer some improvements.
Then, we summarize the fundamental issues in NCSs and ex-
amine them with different underlying network-scheduling
protocols. We present NCS models with network-induced
delay and analyze their stability using stability regions and a
hybrid systems technique. Following that, we discuss meth-
ods to compensate network-induced delay and present ex-
perimental results over a physical network. Then, we model
NCSs with packet dropout and multiple-packet transmis-

sion as asynchronous dynamical systems (ADSs) [11] and
analyze their stability. Finally, we present our conclusions.

Review of Previous Work
Halevi and Ray [1] consider a continuous-time plant and dis-
crete-time controller and analyze the integrated communica-
tion and control system (ICCS) using a discrete-time
approach. They study a clock-driven controller with mis-syn-
chronization between plant and controller. The system is rep-
resented by an augmented state vector that consists of past
values of the plant input and output, in addition to the cur-
rent state vectors of the plant and controller. This results in a
finite-dimensional, time-varying discrete-time model. They
also take message rejection and vacant sampling into account.

Nilsson [2] also analyzes NCSs in the discrete-time do-
main. He further models the network delays as constant, in-
dependently random, and random but governed by an
underlying Markov chain. From there, he solves the LQG op-
timal control problem for the various delay models. He also
points out the importance of time-stamping messages,
which allows the history of the system to be known.

In Walsh et al. [3], the authors consider a continuous
plant and a continuous controller. The control network,
shared by other nodes, is only inserted between the sensor
nodes and the controller. They introduce the notion of maxi-
mum allowable transfer interval (MATI), denoted by τ,
which supposes that successive sensor messages are sepa-
rated by at most τ seconds. Their goal is to find that value of
τ for which the desired performance (e.g., stability) of an
NCS is guaranteed to be preserved.

It is assumed that the nonnetworked feedback system

[ ]�( ) ( ), ( ) ( ), ( )x t A x t x t x t x tp c

T
= =11

(where xp and xc represent the plant and controller state) is
globally exponentially stable. Thus, there exists a P such that

A P PA IT
11 11+ = − . (1)

Next, it is assumed that the network’s effects can be com-
puted by the error, e(t), between the plant output and con-
troller input. So the networked system’s state vector is
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Figure 1. A typical NCS setup and information flows.



z t x t e tT T T( ) [ ( ), ( )]= , and thus the networked closed-loop
system is

�( ) ( )z t Az t=

where A can be partitioned as

A
A A

A A
=











11 12

21 22

.
(2)

Walsh et al. study two scheduling methods: try-once-
discard (TOD) and token-ring-type static scheduling. As-
suming there are p sensor nodes connected to the NCS,
static scheduling simply means that each node transmits
exactly once every p transmissions in a fixed order. Under
the MATI constraint, the controller must receive a transmis-
sion from at least one of the sensors every τ seconds. Hence,
under static scheduling, all sensor values are updated in at
most pτ seconds.

TOD is a scheduling protocol in which the node with the

greatest weighted error from its last reported value (to the
controller) transmits its message. Again, the MATI con-
straint ensures at least one such transmission every τ sec-
onds. However, TOD does not guarantee that each node will
transmit once every p transmissions.

For each of these protocols, one can compute an upper
bound on the MATI τ that preserves stability of the
closed-loop system. The result is given in the following
theorem.

Theorem 1 [3, Theorem 2]: Given an NCS with p sensor
nodes operating under TOD or static scheduling, define
λ λ λ λ1 2= =min max( ), ( )P P (where P was defined above). If the
MATI satisfies

τ
λ λ

λ λ λ
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then the NCS is globally exponentially stable.
The calculation of the bound for τ can be generalized and

tightened by the following corollary.

Corollary 2: If the Lyapunov functionV x x PxT( ) = of the

nonnetworked, closed-loop system satisfies

A P PA QT
11 11+ = − , (3)

(more general than (1)), where P Q, are positive-definite
symmetric matrices, the bound on τ becomes
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Furthermore, the third term is always the smallest, so
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guarantees the global exponential stability of
the NCS.

Proof: See the Appendix.
Corollary 2 shows that the MATI τ depends

on A p, , and Q; Q in turn determines P using
(3). A and p are fixed for a particular system
setup; thus Q is the only variable in choosing τ.
One might use an analytic method to find the Q
that could maximize τ. By maximization we
mean the largest τ possible that could still pre-
serve stability of the NCS. However, the follow-

ing example illustrates the use of random search in
choosing τ.

Example 1: Consider the state-space plant model
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A continuous-state feedback controller is u Kx= − , where
K = [ . , . ]3 75 115 (closed-loop poles at –1/2 and –3/4).

Using Theorem 1, for p =1 (only one node, which
is a nonnetworked sampled-data system), we obtain
τ = × −2 7 10 4. s. By randomly selecting Q and solving for P, we
can calculate τ using the formula in Corollary 2. In 200 trials,
the maximum τ found was 4 5 10 4. × − s. However, the maxi-
mum stable constant sampling period for this feedback con-
trol system is 1.7 s (this can be determined using the
“stability region” technique we discuss below), which
shows that Theorem 1 and Corollary 2 may be conservative.

Theorem 1 and Corollary 2 give sufficient conditions on
the network sampling rate to guarantee that the original
nonnetworked system remains stable when the control loop
is closed over the network. They might be too conservative,
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however, to be of practical use. We later examine stability
for some specific examples to develop some insight into the
problem.

Fundamental Issues in NCSs
In this section, we will analyze some basic problems in
NCSs, including network-induced delay, single-packet or
multiple-packet transmission of plant inputs and outputs,
and dropping of network packets.

Network-Induced Delay
The network-induced delay in NCSs occurs when sensors,
actuators, and controllers exchange data across the net-
work. This delay can degrade the performance of control
systems designed without considering it and can even
destabilize the system.

Depending on the medium access control (MAC) proto-
col of the control network, network-induced delay can be
constant, time varying, or even random. MAC protocols gen-
erally fall into two categories: random access and scheduling
[12]. Carrier sense multiple access (CSMA) is most often
used in random access networks, whereas token passing
(TP) and time division multiple access (TDMA) are com-
monly employed in scheduling networks.

Control networks using CSMA protocols include
DeviceNet [5] and Ethernet [6]. Fig. 2 illustrates various pos-
sible situations for this type of network. The figure depicts
two nodes continually transmitting messages (with respect
to a fixed time line). A node on a CSMA network monitors the
network before each transmission. When the network is idle,
it begins transmission immediately, as shown in Case 1 of Fig.
2. Otherwise it waits until the network is not busy. When two
or more nodes try to transmit simultaneously, a collision oc-
curs. The way to resolve the collision is protocol dependent.
DeviceNet, which is a controller area network (CAN), uses
CSMA with a bitwise arbitration (CSMA/BA) protocol. Since
CAN messages are prioritized, the message with the highest
priority is transmitted without interruption when a collision

occurs, and transmission of the lower priority message
is terminated and will be retried when the network is
idle, as shown in Case 2 of Fig. 2. Ethernet employs a
CSMA with collision detection (CSMA/CD) protocol.
When there is a collision, all of the affected nodes will
back off, wait a random time (usually decided by the bi-
nary exponential backoff algorithm [6]), and retransmit,
as shown in Case 3 of Fig. 2. Packets on these types of
networks are affected by random delays, and the
worst-case transmission time of packets is unbounded.
Therefore, CSMA networks are generally considered
nondeterministic. However, if network messages are
prioritized, higher priority messages have a better
chance of timely transmission.

The TP protocol appears in token bus (IEEE Stan-
dard 802.4), token ring (IEEE Standard 802.5) [6], and
the fiber distributed data interface (FDDI) MAC [13] ar-

chitectures; TDMA is used in FireWire [7]. A timing diagram
for this type of network is shown in Fig. 3. These protocols
eliminate the contention for the shared network medium by
allowing each node on the network to transmit according to
a predetermined schedule. In a token bus, the token is
passed around a logical ring, whereas in a token ring, it is
passed around a physical ring. In scheduling networks, it is
possible to arrange for periodic transmission of messages.
For example, FireWire has a transmission cycle (125 µs) di-
vided into small time slots, where each isochronous trans-
action is guaranteed a time slot to transmit in every cycle.
Packet transmission delays on scheduling networks occur
while waiting for the token or time slot. They can be made
both bounded and constant by transmitting packets peri-
odically.

Single-Packet versus
Multiple-Packet Transmission
Single-packet transmission means that sensor or actuator
data are lumped together into one network packet and
transmitted at the same time, whereas in multiple-packet
transmission, sensor or actuator data are transmitted in
separate network packets, and they may not arrive at the
controller and plant simultaneously. One reason for multi-
ple-packet transmission is that packet-switched networks
can only carry limited information in a single packet due to
packet size constraints. Thus, large amounts of data must
be broken into multiple packets to be transmitted. The
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other reason is that sensors and actuators in an NCS are of-
ten distributed over a large physical area, and it is impossi-
ble to put the data into one network packet.

Conventional sampled-data systems assume that plant
outputs and control inputs are delivered at the same time,
which may not be true for NCSs with multiple-packet trans-
missions. Due to network access delays, the controller may
not be able to receive all of the plant output updates at the
time of the control calculation.

Different networks are suitable for different types of
transmissions. Ethernet, originally designed for transmit-
ting information such as data files, can hold a maximum of
1500 bytes of data in a single packet [6]. Hence, it is more ef-
ficient to lump the sensor data into one packet and transmit
it together—single-packet transmission. On the other hand,
DeviceNet, featuring frequent transmission of small-size
control data, has a maximum 8-byte data field in each
packet; thus, sensor data often must be shuttled in different
packets on DeviceNet.

Dropping Network Packets
Network packet drops occasionally happen on an NCS when
there are node failures or message collisions. Although
most network protocols are equipped with transmis-
sion-retry mechanisms, they can only retransmit for a lim-
ited time. After this time has expired, the packets are
dropped. Furthermore, for real-time feedback control data
such as sensor measurements and calculated control sig-
nals, it may be advantageous to discard the old,
untransmitted message and transmit a new packet if it be-
comes available. In this way, the controller always receives
fresh data for control calculation.

Normally, feedback-controlled plants can tolerate a cer-
tain amount of data loss, but it is valuable to determine
whether the system is stable when only transmitting the
packets at a certain rate and to compute acceptable lower
bounds on the packet transmission rate.

Stability of NCSs with
Network-Induced Delay

Modeling NCSs with
Network-Induced Delay
The NCS model considering network-induced delay is
shown in Fig. 4. The model consists of a continuous plant

�( ) ( ) ( )

( ) ( )

x t Ax t Bu t

y t Cx t

= +
= (6)

and a discrete controller

u kh Kx kh k( ) ( ), , , ,= − =0 1 2 � . (7)

Here, x n∈ R , u m∈ R , y p∈ R , and A B C K, , , are of compatible
dimensions.

There are two sources of delays from the network: sen-
sor-to-controller τ sc and controller-to-actuator τ ca . Any con-
troller computational delay can be absorbed into either τ sc

or τ ca without loss of generality [2]. For fixed control law
(time-invariant controllers), the sensor-to-controller delay
and controller-to-actuator delay can be lumped together as
τ τ τ= +sc ca for analysis purposes.

We consider the setup with a) clock-driven sensors that
sample the plant outputs periodically at sampling instants;
b) an event-driven controller, which can be implemented by
an external event interrupt mechanism and which calcu-
lates the control signal as soon as the sensor data arrives;
and c) event-driven actuators, which means the plant inputs
are changed as soon as the data become available. The tim-
ing of signals of the setup with τ < h is shown in Fig. 5.

Delay Less than One Sampling Period
First consider the case where the delay of each sample, τ k , is
less than one sampling period, h. (Here the subscript repre-
sents the sampling instant.) This constraint means that at
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most two control samples,u k h(( ) )−1 andu kh( ), need be ap-
plied during the kth sampling period. The system equations
can be written as

�( ) ( ) ( ), [ , ( ) ),

( ) ( )

x t Ax t Bu t t kh k h

y t Cx t
k k= + ∈ + + +

=
+τ τ1 1

,

( ) ( ), { , , , , }u t Kx t t kh kk k
+ = − − ∈ + =τ τ 0 1 2 � (8)

where u t( )+ is piecewise continuous and only changes value
at kh k+τ . Sampling the system with period h we obtain [14]

x k h x kh u kh u k h

y kh
k k(( ) ) ( ) ( ) ( ) ( ) (( ) ),

( )

+ = + + −1 10 1Φ Γ Γτ τ
= Cx kh( )

where

Φ
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e

e B ds

e B ds

Ah
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k
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( ) .
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1

τ

τ

τ

τ

Defining z kh x kh u k hT T T( ) [ ( ), (( ) )]= −1 as the augmented
state vector, the augmented closed-loop system is

z k h k z kh(( ) )
~

( ) ( )+ =1 Φ (9)

where

~
( )

( ) ( )
.Φ

Φ Γ Γ
k

K

K
k k=

−
−











0 1

0

τ τ

If the delay is constant (i.e., τ τk = for k = 0 1 2, , ,�), the sys-
tem is still time invariant, which simplifies the system analy-
sis. Thus we can envision static scheduling network
protocols, such as token ring or token bus, which can pro-
vide constant delay. Even in this simplified setup, the next
question is, “How much delay can the system tolerate?”

Another observation is that the sensor-controller delay
can be compensated by an estimator if the messages sent out
by sensors are time stamped (cf. [2]). Traditional one-step
prediction estimation can compensate delays less than one
sampling period, since the estimate of x kh( )only depends on
the value of y k h(( ) )−1 . We will revisit this problem in the sec-
tion on compensation for network-induced delay.

Longer Delays
When the delays can be longer than one sampling period
(say, 0 < <τ k lh, l >1), one may receive zero, one, or more
than one (up to l) control sample(s) in a single sampling pe-
riod. In the special case where ( )l h lhk− < <1 τ for all k, one
control sample is received every sample period for k l> . In
this case, the analysis follows that in [14], resulting in

~
( )

( ) ( )

Φ

Φ Γ Γ

k
I

K

k k

=

′ ′
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1 0 0
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τ τ �

�
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�


,

(10)

where τ τk k l h′ = − −( )1 and the augmented state vector is
z kh x kh u k l h u k hT T T T( ) [ ( ), (( ) ), , (( ) )]= − −� 1 .

In the more general case, tedious bookkeeping must be
performed, as even the block structure of the matrix

~Φ is
time varying, since it depends on the schedule of the receipt
of the control samples.

Stability Regions
Conventionally, a faster sampling rate is desirable in sam-
pled-data systems so the discrete-time control design and
performance can approximate that of the continuous sys-
tem. But in NCSs, a faster sampling rate can increase the net-
work load, which in turn results in longer delay of the
signals. Thus finding a sampling rate that can both tolerate
the network-induced delay and achieve desired system per-
formance is important in NCS design.

Plotting the stability region of an NCS with respect to the
sampling rate, h, and network delay, τ, is helpful to see the
relationship between these two parameters. Note that here
we are considering constant delay, which can be achieved
by using an appropriate network protocol.

Integrator Case
The relationship between h and τ can be derived analytically
for simple scalar systems.

Example 2: Consider the integrator example

�( ) ( ), [ ,( ) ), ,

( ) ( ),

x t u t t kh k h h

u t Kx t t

= ∈ + + + <
= − − ∈+

τ τ τ
τ

1

{ , , , , }, .kh k K+ = >τ 0 1 2 0�

(11)

Defining z kh( ) as in (9)

~
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1

0

hK K

K

τ τ

For this2 2× case, we can use the stability triangle [15] to
explicitly calculate the relation between τ and h. For a stable
NCS, the delay τ must satisfy

max , min ,
1
2

1
0

1
h

K K
h−








< < 







τ
(12)

or

max , min ,
1
2

1
0

1
1−








< < 





Kh h Kh

τ
.

The analytically determined stability region for 0 ≤ <τ h
is shown in Fig. 6. We can see from the stability region that
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when the sampling period h is small, the system can toler-
ate a delay up to one full sampling period. As h becomes
larger, the upper bound on τ/h becomes smaller. Note that
forK h> 2 , even the system with no delay is unstable.

General Scalar System
It may be analytically infeasible to derive the exact stability
region for general systems; however, stability regions for
such systems can still be determined by simulation. The sta-
bility region is plotted by incrementally increasing the delay,
τ, and testing the closed-loop system matrix, as formulated in
(9) and (10). If the closed-loop system matrix is stable, a point
is marked in that location of the stability region.

Example 3: For a general scalar system

�( ) ( ) ( ), [ ,( ) ),

( ) ( ),

x t ax t u t t kh k h

u t Kx t

= + ∈ + + +
= − −+

τ τ
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1

t kh k∈ + ={ , , , , }.τ 0 1 2 �

Defining z kh( ) as in (9)
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K
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1
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0
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The stability region can be determined by simulation. A spe-
cial scalar case with a =1 and K = 2 is shown in Fig. 7. For this
simulation, we considered delays between 0 and 4h. We can
see that when0 ≤ <τ h, the region has a shape similar to the in-
tegrator case. The shape of the stability region is also affected
by the feedback controller (in this case, the scalar feedback
gain).

Analyzing Stability Using a
Hybrid Systems Technique
The stability of an NCS with network-induced delay can also
be analyzed using a hybrid systems stability analysis tech-
nique. Hybrid systems contain continuous dynamics and
discrete events [16]. The NCS model we are studying resem-
bles a class of hybrid systems with fixed instants of impulse
effect. The stability of such continuous-discrete systems
was reviewed and extended in [17], where linearized hybrid
systems of the following form are considered:

�( ) ( ) ( ) ( ( ), ( ), ), \ ,

( ) ( )

x t Ax t Bu t f x t u t t t I

u t Cx t

= + + ∈
=+

Θ
+ + φ ∈Du t x t u t t t( ) ( ( ), ( ), ), ,Θ (13)

where x un m∈ ∈R R, , and Θ = ={ |t t khk k , h > 0, k = 0 1 2, , , }� .
Let z t x t u tT T T( ) [ ( ), ( )]= ; then f z t I Rn( , ):Ω0 × → is continu-
ous in z in the neighborhoodΩ0 ⊂ +R n m for any t in the inter-
val I ⊂ +R . Furthermore, f t t I t t( , ) , , ( , ) ,0 0 0 0= ∈ φ = ∈Θ and
for z z′ ′ ′∈, Ω0 , the conditions

f z t f z t L z z L t I( , ) ( , ) ; , ;′ − ′′ ≤ ′− ′′ > ∈+
1

1
1 0α α

and

φ ′ − φ ′′ ≤ ′− ′′ > ∈+( , ) ( , ) ; , ;z t z t L z z L t2
1

2 0α α Θ

hold. The stability of this type of system reduces to evaluat-
ing the Schur-ness (i.e., whether all the eigenvalues of a ma-
trix have magnitude less than one) of

H
e B

Ce CB D

Ah

Ah
=
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~

( )( )B e B ds E h BA h s
h

= ≡−∫
0

.

Theorem 3 [17, Corollary 14]: If H is Schur, then the
zeroth solution of (13) is asymptotically stable.

We now apply this to an NCS. Using the NCS model in (8)
and referring to the timing of the signals shown in Fig. 5, the
following is suitable for our analysis:

�( ) ( ) �( ), [ ,( ) ),
�( ) (

x t Ax t BKx t t kh k h

x t x t

= − ∈ + + +
= −+

τ τ
τ

1

), { , , , , }.t kh k∈ + =τ 0 1 2 � (14)
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Writing x t( )− τ in terms of x t( ) and �( )x t , we obtain

x t e x t e E BKx tA A( ) ( ) ( ) �( )− = +− −τ ττ τ

and

C e

D e E BK

A

A

=
=

−

−

τ

τ τ
,

( ) .

Comparing this to (13), we obtain the following corollary.
Corollary 4: The stability of an NCS with constant delay

reduces to examining the Schur-ness of

H
e E h BK

e e E h E BK

Ah

A h A
=

−
− −









− −

( )

( ( ) ( ))( )τ τ τ
.

We can use this to recalculate the integrator example of
(11). By setting A = 0 and B =1 in (14), we find

H
hK

h K
=

−
− −











1

1 ( )τ
.

For H to be Schur, τ must satisfy (12), which verifies Ex-
ample 2.

Compensation for
Network-Induced Delay
Sensor-to-controller delay, τ sc, and controller-to-actuator
delay, τ ca , have different natures. Sensor-to-controller delay
can be known when the controller uses the sensor’s data to
generate the control signal, provided the sensor and con-
troller clocks are synchronized and the message is time
stamped. Thus an estimator can be used to reconstruct an
approximation to the undelayed plant state and make it
available for the control calculation. Controller-to-actuator
delay is different, however, in that the controller does not
know how long it will take the control signal to reach the ac-
tuator; therefore, no exact correction can be made at the
time of control calculation.

We present a method of estimating the undelayed plant
state using time domain solutions of the plant state equations.

An NCS estimator should have two primary functions.
One is to work as a conventional state estimator to estimate
the full state of the plant using partial state measurements
(i.e., the plant outputs); the other is to compensate for the
sensor delay to make a more accurate estimate. Thus, two
situations should be analyzed: systems with full-state feed-
back and those with partial-state feedback. The estimation
of the plant state x kh sc k( ),+ τ is based on the sensor mea-
surement at time kh and the sensor-to-controller delay τ sc k, .
Here we assume single-packet transmission and delay less
than one sampling period (i.e., τ sc h< ).

Full-State Feedback

With full-state feedback, the only task of the estimator is to
compensate for the delay, τ sc, to achieve a more accurate
plant state at the time the control signal is calculated. As-
suming the plant and controller models are given by (6) and
(7), this can be done using

x t e x e Bu s dsAt t A t s( ) ( ) ( )( )= + ∫ −0
0

. (15)

The estimation scheme is illustrated in Fig. 8. There, τ sc k, de-
notes the sensor-to-controller delay for plant state x kh( ),
and x kh sc k( ),+ τ denotes the plant state estimate at the time
x kh( ) is received. Assuming there is no measurement noise,
x kh sc k( ),+ τ can be calculated by

x kh x kh

e x kh e

sc k sc k

A A kh ssc k sc k

( ) ( )

( )

, ,

(, ,

+ = +

= + + −

τ τ
τ τ ),

( )
kh

kh sc k
Bu s ds

+∫ τ

(16)
and the control law is computed by

u kh K x khsc k sc k( ) ( ), ,+ = − +τ τ . (17)

Using this control law, the closed-loop system becomes

( ) ( )x k h x khk k k( )
~

( )+ + = ++1 1τ δ τΦ (18)

where

δ τ τ
δ δ δ
δ δ

k sc k sc k

k k k

k
A

h

K

e k

= + −
= −
=

+, , ,
~

( ) ( ) ( ) ,

( ) ,

1

Φ Φ Γ
Φ
Γ( ) .δ

δ

k
Ase Bds

k= ∫
0

Output Feedback
When full-state information is not available for calculation
of the control signal, a state estimator is built to estimate the
plant state. A conventional current-state estimator esti-
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Figure 8. Plant and estimator timing diagram with full-state
feedback.



mates the plant state x kh( ) using the plant output
y kh Cx kh( ) ( )= , as described in [15]:

�(( ) ) ( ) ( )x k h x kh u kh+ = +1 Φ Γ (19)

x k h x k h L y k h Cx k hc(( ) ) �(( ) ) ( (( ) ) �(( ) ))+ = + + + − +1 1 1 1

(20)

where Lc denotes the current estimator gain. The calcula-
tion is done in two steps; first, the estimator state x kh( ) is
projected forward by one sampling period to obtain
�(( ) )x k h+1 , and then �(( ) )x k h+1 is corrected based on the
plant output received.

The estimator with sensor measurement delay is based
on the current-state estimator. Fig. 9 shows how the estima-
tion is carried out. The estimation scheme at time kh is as
follows:

1) Correction based on y kh( ):

( )x kh x kh L y kh Cx khc( ) �( ) ( ) �( )= + − (21)

2) Forward to kh sc k+ τ , :

x kh e x kh esc k
A A kh s

kh

kh
sc k sc ksc k

( ) ( ),
( ), ,,+ = + + −+∫τ τ ττ

Bu s ds( )

(22)
3) Calculate control law:

u kh K x khsc k sc k( ) ( ), ,+ = − +τ τ (23)

4) Forward to ( )k h+1 :

�(( ) ) ( )( )
,

(( ) )

,x k h e x kh

e

A h
sc k

A k h s

kh

sc k+ = +

+

−

+ −

+

1

1

τ

τ

τ

sc k

k h
Bu s ds

,

( )
( ) .

+∫ 1

(24)

Remark 5: The separation principle holds for the estima-
t ion scheme described by (21)-(24). Let
z kh x khk

T
k( ) [ ( )+ = +τ τ , ~ ( )]x khT

k
T+ τ , where ~( )x kh k+ τ is

the estimation error and is defined as

( ) ( ) ( )~x kh x kh x khk k k+ = + − +τ τ τ . (25)

Using the notation defined in (18), the closed-loop system
with the estimator is

( )z k h z khk k k( )
~

( ) ( )+ + = ++1 1τ δ τΦ (26)

where

~
( )

( ) ( ) ( )

( ) ( )
Φ

Φ Γ Γ
Φ Φ

δ
δ δ δ

δ δk
k k k

k c k

K K

L H
=

− −
−









0
.

Proof: See the Appendix.
We can see that the separation principle holds for the esti-

mation scheme. Thus the plant and the estimator can be de-
signed separately, and we can guarantee the stability of both.

Control Experiments
over a Physical Network

Setup

92 IEEE Control Systems Magazine February 2001

sc,kτ

( +khx τ sc,k )

( +1)k h ( +2)k h

( +2)k h( +1)k h

y kh( ) y k h(( +1) ) y k h(( +2) )

kh

kh

Plant

Estimator
Controller

x (( +1) )k hx( )kh

Figure 9. Plant and estimator timing diagram with output feedback.
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To show the influence of networks on control system perfor-
mance and to test the compensation and control strategies,
control experiments over a physical network were per-
formed. This experiment allows real network traffic to be in-
volved in the feedback control of the plant. The
experimental setup is shown in Fig. 10.

For our experiments, we use the Case Western Reserve
University campus-wide network (CWRUnet), which is a
wide-area network containing both Ethernet and ATM at the
physical layer. Communication between nodes is done us-
ing TCP/IP sockets (at the transport and network layer, re-
spectively). TCP/IP sockets provide reliable transmission of
data packets, regardless of possible collisions that might
happen on the physical transmission medium. Therefore,
TCP/IP will result in packet delay but not packet loss.

In our control setup, two computers, working as plant and
controller, respectively, are connected over CWRUnet. Each
computer runs a Visual C++ program as the user interface for
setting up the sockets between them and accepting various
configuration parameters, such as sampling period, control
with estimation, and clock synchronization. The computa-
tion for simulating the plant and controller is carried out us-
ing MATLAB; that is, MATLAB works as a computation engine
for each program on its own computer. MATLAB is invoked as
an ActiveX automation server. On the plant computer, the
C++ program obtains the control signal from the network,
passes it to MATLAB for plant state and output calculation,
and then sends the plant output to the controller computer.
On the controller computer, the C++ program obtains the
plant output from the network, uses MATLAB to calculate the
control signal, and sends the signal to the plant computer. In
this way, sensor data and control data are passed on the net-
work, along with other campus network traffic, and may ex-
perience collision or delay.

For a detailed description of an alternate experimental
testbed for controlling systems over the Internet, see [18].

Clock Synchronization
In the experiment, every message sent out by the plant and
controller is time stamped. To calculate the delay accu-
rately, plant and controller clocks must be synchronized.

Clock synchronization can be achieved in several ways,
such as software synchronization, hardware synchroniza-
tion, or a combination of the two. Clock synchronization in
our experiment has been done as in [19]. Suppose the con-
troller wants to synchronize its clock with the plant. It sends
a message to the plant, and the plant will send its clock read-
ing back to the controller. The controller records the clock
offset and the round-trip time. The measurement is carried
out many times, and the controller uses the clock offset with
the minimum round-trip time.

An Example
The following example illustrates the effectiveness of the
compensation scheme described above.

Example 4: Consider the state-space plant model

�

�
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x
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2
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2
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0

1

1 0
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 .

A state feedback controller is u Kx= − , where K = [ , ]25 10
(closed-loop poles at − ±5 10 j).

The plant and controller are implemented in two
MATLAB M-files that run on two computers, as described
above. The plant state x t( ) and the control signal u t( ) are
sent using TCP/IP sockets. A scaled step response using
full-state feedback is shown in Fig. 11, with comparison to
the nonnetworked sampled data system. Network-induced
delay causes the closed-loop plant to be underdamped, re-
sulting in larger overshoot in the step response. After using
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delay compensation, the response is very similar to the
nonnetworked system. Indeed, the difference is caused by
the controller-to-actuator delay, which is not compensated
by this scheme.

This linear estimator also works well when there is an
unmodeled nonlinearity in the plant model. For example,
consider the plant

� ( ),
� .

x x

x u
1 2

2

5=
=

sin

The experimental result, shown in Fig. 12, illustrates that the
compensation scheme still works well.

Stability of NCS
with Data Packet Dropout
When using an NCS, one must consider not only net-
work-induced delay, but also data packet dropout. Net-
works can be viewed as unreliable data transmission paths,
where packet collision and network node failure occasion-
ally occur. When there is a packet collision, instead of re-
peated retransmission attempts, it might be advantageous
to drop the old packet and transmit a new one. Thus it is
valuable to analyze the rate (percentage successful) at
which the data should be transmitted to achieve the desired
performance (stability).

An NCS with data packet dropout can be modeled as an
asynchronous dynamical system (ADS) with rate con-
straints on events. The stability of this type of system is
studied in [11]. We will extend a result therein to NCSs.

ADSs with Rate Constraints
ADSs, like hybrid systems, are systems that incorporate
continuous and discrete dynamics. The continuous dynam-
ics are governed by differential or difference equations,
whereas the discrete dynamics are governed by finite au-
tomata that are driven asynchronously by external discrete
events with fixed rates [11].

We consider a simplified ADS with rate constraints that
can be described by a set of difference equations

x k f x k s Ns( ) ( ( )), , , ,+ = =1 1 2 � ,

with continuous-valued state x k n( ) ∈ R . Here, 1 2, , ,� N rep-
resents the set of discrete states, which has a correspond-
ing set of rates r r rN1 2, , ,� . These rates represent the fraction
of time that each discrete state occurs; thus Σi

N
ir= =1 1.

The stability of such an ADS is given by the following the-
orem.

Theorem 6 [11]: Given an ADS as defined above. If there
exist a Lyapunov function V x k n( ( )):R R→ + and scalars
α α α1 2, , ,� N corresponding to each rate such that

α α α α1 2
1 2 1r r

N
rN⋅ ⋅ ⋅ > > (27)

and

( )V x k V x k V x k s Ns( ( )) ( ( )) ( ( )), , , , ,+ − ≤ − =−1 1 1 22α �

(28)
then the ADS remains exponentially stable, with decay rate
greater than α .

Theorem 6 requires the ADS to be stable on the average.
It does not require every difference equation of the ADS to
be stable, but rather it guarantees the ADS to be stable on
the whole. If the discrete state dynamics is given by
x k h x khs(( ) ) ( )+ =1 Φ for s N=1 2, , ,� , the search for the
Lyapunov function of type V x kh x kh Px khT( ( )) ( ) ( )= and
the scalars α α α1 2, , ,� N can be cast into a bilinear matrix in-
equality (BMI) problem [11]. Equations (27) and (28) can be
rewritten as

r r rN N1 1 2 2 0log log logα α α+ + ⋅⋅⋅ + >

and

Φ Φs
T

s sP P s N≤ =−α 2 1 2, , , ,� .

This is a BMI problem in P and the logα is.

Modeling an NCS
with Data Packet Dropout
Fig. 13 illustrates an NCS setup with the possibility of drop-
ping data packets. Here we assume that the nonnetworked
system is stable and the network is only inserted from the
plant to the controller. The network can be modeled as a
switch that closes at a certain rate r. When the switch is
closed (position S1), the network packet containing x kh( ) is
transmitted, whereas when it is open (position S2), the out-
put of the switch is held at the previous value and the packet
is lost. Thus the dynamics of the switch (state x) can be
modeled as

S x kh x kh

S x kh x k h
1

2 1

: ( ) ( ),

: ( ) (( ) ).

=
= −

Let z kh x kh x khT T T( ) [ ( ), ( )]= be the augmented state vec-
tor; the closed-loop system with the network packet drop-
out effect is represented by
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x kh( )Φ + Γ u kh( )x k h(( +1) ) =
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Figure 13. NCS with data packet dropout.
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Normally, a feedback control system can tolerate a certain
amount of feedback data loss. The following corollary can be
used to test the system stability for a certain rate of data loss.

Corollary 7: For the above system setup, assume the
plant state x kh( )is transmitted at the rate of r. If there exist a
Lyapunov functionV x kh x kh Px khT( ( )) ( ) ( )= and scalars α 1

and α 2 such that

α α
α
α

1 2
1

1 1 1
2

2 2 2
2

1r r

T

T

P P

P P

−

−

−

>
≤
≤

,
~ ~

,
~ ~
Φ Φ
Φ Φ

the system is still exponentially stable.
With the plant state being transmitted at rate r, the effec-

tive sampling period becomes h h reff = / . This suggests that
the plant can be stabilized by a slower sampling rate. In
other words, the result shows that when we have fast sam-
pling, we can drop the samples at a certain rate to save net-
work bandwidth and still provide a stable feedback control
system.

Example 5: Consider the state-space plant model in Ex-
ample 1. When the plant is sampled with a sampling period
h = 0 3. s, we obtain

Φ Γ=








 =

10 0 2955

0 0 9704

0 0167 0 0512

01108 0 33

. .

.
,

. .

. .
K

99









 ,

and the closed-loop system ( )Φ Γ− K is still stable with the
continuous controller. With the setup shown in Fig. 13, and
assuming the transmission rate r = 0 7. , we solve the LMI
problem [20], [21] in Corollary 7 to find

α α1 211288 0 7552= =. , .

and

P =

− −
− −

0 9210 0 9196 0 6578 0 5144

0 9196 24788 0 5232 1

. . . .

. . . .6644

0 6578 0 5232 0 7003 0 6461

0 5144 16644 0 6461

− −
− −

. . . .

. . . 20562.

,



















which proves the stability of the system. This means that
when the plant state is sampled every 0.3 s, if 70% of the pack-
ets are delivered to the controller, we can still guarantee the
stability of the feedback control system. The result shows an
effective sampling period of h h reff = =/ .0 43 s; in fact, the max-
imum stable constant sampling period for this system is 1.7 s.
The comparison of step responses with packet dropouts is
shown is Fig. 14. We can see that the step response with 70%
packets transmitted is similar to the original system. A large
difference can be seen when only 20% of packets are transmit-
ted (but the system is still stable, as we prove below).

The setup in Fig. 13 has also been considered by Walsh et
al. [3], who used a different approach to determine the MATI
τ when the feedback loop is closed over the network. Using
this conservative approach, the MATI τ of this example is
4 5 10 4. × − s, which will consume a lot of network bandwidth if
it is implemented in a real application. The method pre-
sented here takes a probabilistic approach while guarantee-
ing the exponential stability of the NCS, and it only requires
plant state to be transmitted at a certain rate. This reduces
network traffic without sacrificing stability.

The lower the transmission rate, the less network band-
width used. The next question would be, “What is the lower
bound on transmission rate r that still guarantees the stabil-
ity of the system?” Theorem 8 involves the bound on the
transmission rate r for a stable NCS.

Theorem 8: Consider the setup of Fig. 13, assuming that
the closed-loop system with no dropout is stable (i.e.,Φ Γ− K
is Schur).

• If the open-loop system (Φ) is marginally stable, then
the system is exponentially stable for all 0 1< ≤r .

• If the open-loop system is unstable, then the system is
exponentially stable for all

1
1

1
1 2−

< ≤
γ γ/

r

where
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2= − =log ( ) , log ( ) .max maxΦ Γ ΦK

Proof: See the Appendix.

Example 6: Example 5 hasΦ marginally stable, so the net-
worked controller is stable for all r > 0.

Modeling an NCS
with Multiple-Packet Transmission
An NCS with multiple-packet transmission can also be mod-
eled as an ADS. In multiple-packet transmission mode, plant
state or output are split into separate packets. Fig. 15 illus-
trates a case where the plant state is transmitted in two
packets. The dynamics of the network is given by

S x kh x kh x kh x k h

S x kh x k
1 1 1 2 2

2 1 1

1: ( ) ( ), ( ) (( ) ),

: ( ) ((

= = −
= − =1 2 2) ), ( ) ( ).h x kh x kh

Assume

x kh x kh x khT T T( ) [ ( ), ( )] , ,= =










=

1 2
11 12

21 22

1

Φ
Φ Φ
Φ Φ

Γ
Γ
Γ2

1 2









 =, [ , ].K K K

Let the augmented state be ( ) ( )[ ( )z kh x kh x khT T= 1 2, ,
x kh x khT T T

1 2( ), ( )] . We can now write the closed-loop system
with two-packet transmission as

z k h z khs(( ) )
~

( )+ =1 Φ

for s =1 2, . When the switch is at S1,

~Φ

Φ Φ Γ Γ
Φ Φ Γ Γ
Φ Φ Γ Γ1

11 12 1 1 1 2

21 22 2 1 2 2

11 12 1 1 1

=

− −
− −
− −

K K

K K

K K

I
2

0 0 0



















,

whereas when the switch is at S2,

~Φ

Φ Φ Γ Γ
Φ Φ Γ Γ

Φ Φ Γ

2

11 12 1 1 1 2

21 22 2 1 2 2

21 22 2

0 0 0
=

− −
− −

−

K K

K K

I

K 1 2 2−

















Γ K

.

The modeling can be easily extended to systems with
more than two packets.

Stability in Scheduling Networks
We know that in scheduling networks, packets are sent out
sequentially in a predetermined order, as shown in Fig. 16.
The packet sequence received by the controller is
x x x x1 2 1 2→ → → → ⋅⋅⋅.

Remark 9: If
~ ~Φ Φ1 2⋅ is Schur, the NCS with static schedul-

ing of transmitting plant states is exponentially stable.
This shows that it is not necessary to ensure that both

~Φ 1

and
~Φ 2 are Schur. The NCS is stable if

~ ~Φ Φ1 2⋅ is Schur, as the
following example illustrates.

Example 7: Consider the system in Example 5 with the
plant state x x1 2, transmitted separately in two packets.
With h = 0 3. s, we have

~

. . . .

. . .

.
Φ 1

10 0 2995 0 0167 0 0512

0 0 9704 01108 0 3399

1
=

− −
− −

0 0 2995 0 0167 0 0512

0 0 10 0
10 0 29

2

. . .

.

~

. .

− −



















=Φ

95 0 0167 0 0512

0 0 9704 01108 0 3399

0 0 10 0

0 0 9704

− −
− −

. .

. . .

.

. − −

















01108 0 3399. .

.

Neither
~Φ 1 nor

~Φ 2 is Schur; however,
~ ~Φ Φ1 2⋅ is Schur,

which proves the stability of the system if a scheduling net-
work is applied.

Using static scheduling on this two-packet setup, each
packet is transmitted 50% of the time; thus the effective
sampling period is h heff = =/ . .0 5 0 6 s. The step response of
this two-packet transmission setup is similar to the origi-
nal system.

Conclusions
This article analyzed several fundamental issues in network
control systems. One issue is the network-induced delay
when transmitting sensor data and control data. Depending
on the control network protocol employed, the delay can be
either constant or time varying. The relationship between
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the sampling rate h and the network-induced delay τ was
captured using a stability region plot. Stability of an NCS was
also characterized using a hybrid systems stability analysis
technique. Methods to compensate network-induced delay
using the time-domain solution of the plant model were dis-
cussed, and experimental results over a physical network
(CWRUnet) were presented. We then modeled an NCS with
packet dropout and multiple-packet transmission (which
may occur due to the limitation of the control network) as
an asynchronous dynamical system. We determined
whether the NCS is stable at a certain rate of data loss, and
we searched for the highest rate of data loss for the NCS to
be stable.
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Appendix
Proof (Corollary 2): Throughout, we use vector and ma-

trix norm definitions and inequalities [22].
The Lyapunov function V x( ) must satisfy the following

inequalities:

λ λ
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Thus, following the proof of [3, Theorem 2], (8) of [3] should
be rewritten as:
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Because of the choice of τ,
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The same result as in [3] can then be obtained: for all
t t p V x t z t> + <0 2 0
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we still have V x t z t e t z t( ( )) ( ) , ( ) ( )< <γ γ2 0
2

1 0 for all
t t p> +0 τ.

Viewing the NCS as perturbed by the bounded error sig-
nal e t( ), consider the system

� ( ) ( ) ( )x t A x t A e tz z= +11 12

star ting at t t p= +0 τ with zero init ial condition
x t p( )0 0+ =τ . We can conclude that for all t t p> +0 τ,
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and, by the choice of γ1 above, x t z tz ( ) ( / ) ( )< 1 4 0 . The rest
of the proof for this part continues as in [3].

We now proceed to prove that the third bound is always
the smallest among the three terms above. We first prove
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Since ln( )2 is greater than 0.125,
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and the result follows. We then can prove

λ
λ λ λ λ λ

λ λ

min( )

/ ( / )

( / )

Q

A i

A i

i

p

i

16 1

1

8 1

2 2 1
2

2 1 1

2 1 1

+

≤
+

=

=

∑
p∑

.

Canceling common terms, we must show
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Since λ λ2 1 1/ ≥ by definition, it is enough to show
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Taking norms on both sides of (3), we obtain

− = +
≤ +
=

Q A P PA

A P P A

P A

T

T

11 11

11 11

112

where the inequality follows from the triangle inequality
plus the submultiplicative property of the matrix 2-norm.
Now, since P is posit ive-definite symmetric,
P P= =λ λmax ( ) 2. Also, A A≥ 11 follows easily from the def-
inition of the induced norm, since the latter is a submatrix of
the former (cf. (2)). Therefore,

λ λmin( )Q Q A≤ − ≤ 2 2
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1
2

≤ .

Q.E.D.
Proof (Corollary 5): The plant model is given by

( )x k h x kh u khsc k k sc k k sc k( ) ( ) ( ) ( ) ( ), , ,+ + = + + ++1 1τ δ τ δ τΦ Γ ,

where δk , Φ( )δk , and Γ( )δk are given (18).
The estimation scheme is given by (21)-(24); from (21)

and (24) we have
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and from (22) we have
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The estimation error is defined in (25), and the error equa-
tion is
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(29)
Now apply the control law to form the closed-loop sys-

tem

u kh Kx khsc k sc k( ) ( ), ,+ = − +τ τ .

The closed-loop system is
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Combining (29) and (30), we have (26).
Q.E.D.

Proof (Theorem 8): Consider the setup of Corollary 7,
and define β αi i= −2 for i =1 2, . Substituting and taking logs, if
the transmission rate r satisfies

log
log log

β
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2 1
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where β1 1< andβ β2 1> are positive constants and P is a pos-
itive-definite symmetric matrix such that
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the system is exponentially stable.
Transmission rate r depends onβ1 andβ2, and the choice

of β1, β2 must satisfy β λ1
2

1≥ max (
~

)Φ and β λ2
2

2≥ max (
~

)Φ .
Looking at (31), it makes sense to minimize both logβ2

and logβ1 0< to obtain the weakest lower bound on r
possible from that equation.

Now note that
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( )λ λmax max

~
( )2

1
2Φ Φ Γ= − K ,

since the two matrices share the same spectrum (although
each eigenvalue of the former has twice the multiplicity of
the latter). Also note that the block-diagonal structure of

~Φ 2

implies

( ) { }λ λmax max

~
max , ( )2

2
21Φ Φ= ,

with one achieving the maximum if and only if Φ is stable.
The theorem is now seen to easily follow.

Q.E.D.

Wei Zhang received his B.S. and M.S. degrees in electrical
engineering from Tianjin University, Tianjin, China, in 1993
and 1996, respectively. He then worked for the Industrial Au-
tomation and Control Division of Honeywell (Tianjin) Ltd. as
a Systems Engineer from 1996 to 1997. He is now pursuing
his Ph.D. degree in electrical engineering and computer sci-
ence at Case Western Reserve University. His research inter-
ests include the modeling, analysis, and design of
networked control systems.

Michael S. Branicky received the B.S. (1987) and M.S.
(1990) degrees in electrical engineering and applied physics

from Case Western Reserve University (CWRU). In 1995, he
received his Sc.D. in electrical engineering and computer
science from the Massachusetts Institute of Technology. In
1997, he rejoined CWRU as an Assistant Professor of Electri-
cal Engineering and Computer Science. He has held re-
search positions at MIT’s AI Lab, Wright-Patterson AFB,
NASA Ames, Siemens Corporate Research (Munich), and
Lund Institute of Technology’s Dept. of Automatic Control.
His research interests include hybrid systems, intelligent
control, and learning, with applications to robotics, flexible
manufacturing, and control over networks.

Stephen M. Phillips received the B.S. degree with distinction
in electrical engineering from Cornell University in 1984 and
the M.S. and Ph.D. degrees in electrical engineering from
Stanford University in 1985 and 1988, respectively. He joined
the faculty of Case Western Reserve University in 1988, where
he is currently Associate Professor in the Department of Elec-
trical Engineering and Computer Science. He serves as Direc-
tor of the Center for Automation and Intelligent Systems and
is a registered professional engineer. His research interests
include sampled-data control, system identification, and
adaptive control, with applications to manufacturing, aero-
space, and microelectromechanical systems.

February 2001 IEEE Control Systems Magazine 99


