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Privacy Preserving Smart Meter Streaming Against
Information Leakage of Appliance Status

Yuan Hong, Member, IEEE, Wen Ming Liu, and Lingyu Wang, Member, IEEE

Abstract— The smart grid frequently collects consumers’ fine-
grained power usage data through smart meters to facilitate
various applications, such as billing, load monitoring, regional
statistics, and demand response. However, the smart meter
reading streams may also pose severe privacy threats to the
consumers by leaking their appliances’ ON/OFF status. In this
paper, we first quantitatively measure the information leakage
with respect to specific appliances’ status from any reading
stream, and define a novel privacy notion to bound such infor-
mation leakage. In addition, we propose a privacy preserving
streaming algorithm with different options to effectively convert
readings and promptly stream safe readings in different fashions.
The output time series readings satisfy our privacy notion while
guaranteeing excellent utility, such as extremely low aggregation
errors and billing errors. Finally, we experimentally validate the
effectiveness and efficiency of our approach using real data sets.

Index Terms— Smart metering, privacy, anonymity, utility.

I. INTRODUCTION

THE smart grid integrates sensors and communication
networks into the existing power grid to ubiquitously

collect data from the grid for operational intelligence [14].
As a critical component in such an infrastructure, smart meters
frequently transmit fine-grained readings to the electric utility,
e.g., a reading every 15 minutes [27]. Such reading streams
greatly benefit the utilities (e.g., load balancing) as well as
the energy consumers (e.g., optimizing electricity usage) [13].
However, some recent studies show that such features may
also lead to serious breaches of consumers’ privacy [4], [7].
The fine-grained meter readings could potentially reveal the
consumers’ personal daily behavior or habits, e.g., cooking
time (by the stove or microwave), and frequency of going to
the bathroom at night (by the light switched on).

To prevent adversaries from compromising energy con-
sumers’ personal privacy, three major categories of privacy
preserving techniques were proposed. First, some existing

Manuscript received August 23, 2016; revised December 8, 2016 and
March 14, 2017; accepted April 25, 2017. Date of publication May 16,
2017; date of current version June 20, 2017. This work was supported by
the National Science Foundation under Grant CNS-1618221. The work of
W. M. Liu and L. Wang was supported by the Natural Sciences and
Engineering Research Council of Canada under Discovery Grant N01035. The
associate editor coordinating the review of this manuscript and approving it
for publication was Dr. Guofei Gu. (Corresponding author: Yuan Hong.)

Y. Hong is with the Department of Computer Science, Illinois Institute of
Technology, Chicago, IL 60614 USA (e-mail: yuan.hong@iit.edu).

W. M. Liu and L. Wang are with the Concordia Institute for Informa-
tion Systems Engineering, Concordia University, Montreal, QC H3G 1M8,
Canada (e-mail: l_wenmin@ciise.concordia.ca; wang@ciise.concordia.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2017.2704904

approaches (e.g., [4]) inject tolerable noise into the origi-
nal or aggregated meter readings. However, they trade off
some output utility for desired privacy and may not be able to
ensure high aggregation and billing accuracy due to the ran-
dom noise. Second, some approaches (e.g., [30]) encrypt the
meter readings with cryptographic primitives and only report
the temporally or geographically aggregated data for specific
applications (e.g., billing [12], regional statistics [7]). How-
ever, without reporting the fine-grained readings, the output
cannot support many real world smart grid applications (e.g.,
load monitoring [15]). Finally, some approaches (e.g., [37])
attach batteries for households to mask the meter readings.
However, they may require expensive devices or facilities to
support the scheme and thus result in high cost for both
implementation and maintenance.

More importantly, the privacy models in most of the existing
solutions (e.g., [7], [30], [37]) only consider all the fine-
grained meter readings (viz. a series of numbers) as sensitive
data and simply aim to anonymize such “numbers”. To the best
of our knowledge, the privacy risks in terms of “appliances’
ON/OFF status at different times” (which directly reflects the
privacy concerns of energy consumers) has not been formally
defined and quantified in literature. Specifically, the following
are unclear in most of the prior privacy models: (1) which
reading is sensitive and vulnerable? (2) how much information
related to the appliance status can be leaked from the readings?
and (3) what kind of background knowledge can be utilized
to identify the appliance status from the reading streams?

To tackle such issues, in this paper, we investigate the
privacy risks by linking the meter readings to appliances’
ON/OFF status at different times, and formally define a privacy
notion (denoted as (ε, δm )-Uncertainty) to quantify and bound
such threats of information leakage in any reading stream.
Different from most of the prior work, we propose an efficient
privacy preserving algorithm to stream output readings with-
out any aggregation while guaranteeing rigorous privacy and
excellent utility. Therefore, the outputs can support most smart
metering services, e.g., billing [12], regional statistics [7], and
load monitoring [15], and such outputs can also be fed into
the aggregation-based solutions when necessary.

A. Motivating Example

Table I presents a set of sample time series readings,
and Table II shows the electric appliances and the labeled
consumption rates in watts for a household [1].

In real world, the adversaries can obtain the read-
ings and possess the background knowledge of common

1556-6013 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2228 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 9, SEPTEMBER 2017

TABLE I

READING STREAM (FREQUENCY: 1 READING PER 6 MINUTES)

TABLE II

APPLIANCES’ CONSUMPTION RATES

appliances’ consumption rates. From the first reading
0.08kWh (in 0.1 hour), he/she can learn the overall consump-
tion rate as 800watts. Then, with the background knowledge
in Table II, the adversary can learn that exactly one of the
following possibilities may occur: (1) microwave (800watts)
is ON, (2) PC, light, vacuum cleaner, TV and stereo sys-
tem (800watts in total) are ON, or (3) other combinations of
appliances with overall consumption rate 800watts. Moreover,
looking at the reading time 6:30pm, he/she can infer that
microwave is highly likely to be ON due to the cooking time.

Second, at 7:30pm, consumption rate 1300watts can be
learned. Thus, dishwasher is likely to be ON at 7:30pm (due
to 1300watts). In reality, a sequential usage pattern of two
appliances “microwave → dishwasher” (washing the dishes
after dinner) could help the adversary confirm that dishwasher
is ON at 7:30pm. Similarly, TV and stereo system might be
ON at 8:00pm due to the TV’s temporal usage pattern, as well
as the correlation between TV and stereo system to be ON
simultaneously (can be known as background knowledge).

Third, besides the consumption rate/time, some appliances
also have their unique signatures on the length of usage.
Then, adversaries can also utilize it to learn the status of
different appliances. For instance, washer is likely to be
ON at 8:06pm (due to 1500watts) and it is also likely to be
ON at 8:12pm (due to 1700watts). Then, the adversary can
confirm that the washer is extremely likely to ON at both
times due to a common background knowledge that washer
runs continuously for at least 30 minutes in general. �

In this paper, we will investigate a set of possible infor-
mation leakage to breach the consumers’ privacy from smart
meter reading streams, and define a novel privacy notion to
quantify and bound such risks. Then, the primary contributions
of this paper are summarized as below:

• We define a novel privacy notion to quantify and bound
the privacy leakage w.r.t. the readings’ actual implications
on specific appliances’ ON/OFF status.

• We propose an efficient privacy preserving streaming
algorithm with different options to effectively convert
readings and promptly stream safe readings with excel-
lent output utility, e.g., negligible aggregation/billing
errors.

• We conduct experiments to evaluate the performance of
our streaming algorithm on real datasets and provide case
studies for real-life households.

The rest of the paper is organized as follows. Section II
first reviews the related work. Section III formally defines
some models. In Section IV, we present our privacy preserving
streaming algorithm. Then, we give analysis on privacy, com-
plexity and implementation in Section V. Section VI presents
the experimental results, and Section VII summarizes some
limitations and challenges. Finally, we draw the concluding
remarks and discuss the future work in Section VIII.

II. RELATED WORK

In the past decade, various privacy models were proposed to
bound the privacy risks of identifying any individual or asso-
ciating any individual with the sensitive values in many
different datasets, such as k-anonymity [36] for anonymizing
tabular data, and ρ-uncertainty [6] for preventing inferences
in transaction data. Furthermore, differential privacy [11] has
been extended to tackle the privacy concerns in many different
contexts based on randomizations, such as recommender [23],
search queries [16], [18], [21] and smart metering [4].

Recently, privacy-preserving techniques have been
developed for mitigating privacy risks in fine-grained meter
readings [4], [29], [31]. For instance, Rottondi et al. [29]
presented a secure communication protocol which allows
utilities to securely aggregate smart meter readings.
Ács and Castelluccia [4] proposed a differentially private
scheme that enables smart meters to periodically report
data to power suppliers and compute aggregated statistics
with rigorous privacy guarantee. In addition, Shi et al. [33]
proposed a differentially private randomization based
aggregation of distributed time series data (e.g., readings
collected from multiple smart meters) with differential
privacy guarantee. Different from the noise based data
perturbation (e.g., state-dependent perturbation [38]), our
privacy preserving streaming algorithm does not report
probabilistic results, which can reduce errors and variance
in general. In the context of smart metering aggregation and
perturbation, more recently, Savi et al. [32] quantitatively
analyzed a tradeoff between the aggregation set size,
the precision on the aggregated measurements, and the privacy.
Finally, renewable energy sources (e.g., battery) can be utilized
to mask the original meter readings of households as well [37].

A. Non-Intrusive Load Monitoring (NILM)

In some NILM algorithms [8], [9], [25], [26], privacy
concerns have been identified since the NILM algorithms
estimate the specific appliances’ energy consumption at dif-
ferent times in households, e.g., [8], [9], [26]. However,
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TABLE III

FREQUENTLY USED NOTATIONS

such NILM algorithms cannot provide an upper bound for
the probabilities of disaggregation (this was also indicated
in [10]). Then, the privacy enhancing techniques extended
from NILM algorithms (e.g., [26]) cannot quantify and bound
the risks with theoretical guarantee of privacy. Instead, in this
paper, the privacy leaking risks can be quantified, and can be
bounded with our defined privacy notion to provide theoretical
guarantee of privacy. Notice that, among the NILM studies,
Dong et al. [10] have learned the upper bounds on the
probabilities of distinguishing between scenarios of appliance
usage based on the energy consumption distribution (which
was missing in most of the NILM algorithms). However,
in such work, privacy notions are not defined to quantify the
privacy risks, and there does not exist a privacy preserving
algorithm to output safe readings based on the derived upper
bounds either.

III. MODELS

We now illustrate the information leakage, privacy notions,
and three utility measures. Table III lists some frequently used
notations.

A. Preliminary Models

We denote a smart meter’s associated appliance set as
A = {a1, . . . , a|A|}, where |A| is the number of appli-
ances (how smart meter populates and maintains its appliance
set A is discussed in Section V-C). We use |a1|, . . . , |a|A||
to represent their labeled consumption rates. In addition,
we define reading frequency as φ: the time interval between
two consecutive readings (e.g., 15 minutes). The readings can
be converted into consumption rates, and vice-versa.

Given an appliance set A and the consumption rate of
each appliance in A, we first define a function to calculate
the overall consumption rate of any subset of A (which is a
combination of appliances).

Definition 1 (Consumption Rate Function h(·)): Given any
subset of an appliance set A: ∀E ⊆ A, function h(·) is
defined to calculate the overall consumption rate of all the
appliances in E : h(E) = ∑

∀ax∈E |ax |, where |ax | denotes
ax ’s consumption rate.

Then, h(·) can be used to calculate the unique consumption
rates of all the subsets of A, which are denoted as:

Definition 2 (Candidate Rate Set G): Given the power set
2A of an appliance set A, the set of unique consumption rates:

G = {h(E) : ∀E ⊆ 2A} (1)

where E is a subset of A.

As a result, for any consumption rate ω ∈ G, we can find
all the subsets of A whose consumption rate equals ω by
traversing 2A. We consider such process as a function:

Definition 3 (Candidate Appliance Set Function c(·)):
Given any consumption rate ω ∈ G, function c(·) is defined
as

c(ω) = {E : E ⊆ 2A, h(E) = ω} (2)

B. Privacy Leakage

In this paper, we look at the case that each appliance is either
completely “ON” or completely “OFF” between two adjacent
readings (which occurs very often in the reading stream due
to short time intervals). Indeed, this is the worst case of
leaking consumers’ privacy since the overall consumption rate
in that time interval (e.g., 15 minutes) accurately reflects all
the appliances which are “ON”.

1) Leakage in a Single Reading: The “ON/OFF” status of
any appliance can be possibly leaked from a single reading
which includes the consumption amount/rate and consumption
time.

a) Consumption rate: Denoting the size of ω’s candidate
appliance set c(ω) as |c(ω)|, we can represent c(ω) as {c(ω)1,
c(ω)2, . . . , c(ω)|c(ω)|}. Since there are |c(ω)| combinations
of appliances that would lead to the consumption rate ω,
adversaries can enumerate all the entries in c(ω) and infer
a view for all the possible combinations of appliances {c(ω)1,
c(ω)2, . . . , c(ω)|c(ω)|}. Indeed, in such view, each combination
of appliances ∀y ∈ [1, |c(ω)|] can have a probability Py such
that

∑|c(ω)|
y=1 Py = 1. We can quantify the information leakage

in the adversary’s view using their Entropy [34]:

H (c(ω)) = −
|c(ω)|∑

y=1

(Py log Py) (3)

Therefore, the maximum information leakage occurs in case
that P1 = P2 = · · · = P|c(ω)| (maximum entropy). In other
words, among all the possible inferences in the adversary’s
view, P1 = P2 = · · · = P|c(ω)| would result in (households’)
maximum privacy leakage (viz. adversary’s maximum infor-
mation gain) from the consumption rate ω. Then, given a
reading r = ωφ, adversaries can have the maximum privacy
leaking view which is P1 = P2 = · · · = P|c(ω)| = 1

|c(ω)| for
each of the possible combinations of appliances with overall
consumption rate ω.

As a result, the information leakage w.r.t. “any appliance
ax is ON” can be quantified from all the possible combi-
nations (entries in the candidate appliance set c(ω)): ∀y ∈
[1, |c(ω)|], if appliance ax is in the appliance set c(ω)y , then

1
|c(ω)| is added into the overall information leakage. Thus,
given the consumption rate ω, the information leakage w.r.t.
“appliance ax is ON” can be represented as:

I[ω → ax ] =
|c(ω)|∑

y=1

Ixy

|c(ω)| ∈ [0, 1] (4)

where ∀y ∈ [1, |c(ω)|], Ixy ∈ {0, 1} and if ax ∈ c(ω)y then
Ixy = 1; otherwise Ixy = 0.
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b) Consumption time: Besides the consumption rate,
since many appliances may have temporal usage patterns,
the timestamp of a reading can also be exploited by adversaries
to further identify appliances’ “ON/OFF” status at that time.
For instance, microwave might be “ON” with a very high
probability at 6pm, and TV is very likely to be “ON” between
7-9pm. Note that the temporal usage patterns can be readily
estimated by the adversaries via exterior knowledge, e.g.,
the power usage of most households, weather conditions,
and other public resources. Then, we also use the [0,1]
range to measure such information leakage where 0 represents
“impossible to be ON” whereas 1 means “impossible to be
OFF” (note that it refers to the likelihood of using a certain
appliance at a specific time by most households, which can
be simply estimated by everyone). Then, the adversary can
envision a view of the information leakage of all the appli-
ances’ status (based on how likely each appliance is ON at
different time). For instance, I[3am → Microwave] = 0.02,
I[8 pm → T V ] = 0.3. Thus, given a consumption time t ,
the information leakage w.r.t. “appliance ax is ON” can be
represented as:

I[t → ax ] ∈ [0, 1] (5)

c) Information leakage quantification: We then measure
the information leakage w.r.t. “an appliance is ON” from
a reading, which discloses to the adversaries the overall
consumption rate ω and time t .

Definition 4 (Information Leakage of Appliance Status):
Given a reading r (consumption rate ω) at time t , we merge
the information leakage w.r.t. “appliance ax is ON” from the
consumption rate ω and time t using their union:

I[(ω, t) → ax ] = I[(ω → ax) ∪ (t → ax)]
= I[ω → ax ] + I[t → ax ]

−I[(ω → ax) ∩ (t → ax)] (6)
Notice that both the consumption rate ω and time t leak

private information regarding ax ’s status. Nevertheless, in our
privacy model, the joint information leakage I[(ω, t) → ax ]
should be bounded in any case, and I[(ω, t) → ax ] achieves
its maximum value when the two correlated information
leakage from the consumption rate ω and time t individually
leak information – two fixed amounts of leakage from ω and
t have the least overlap, and thus make the joint leakage (the
union) achieve the maximum value. Then, we only need to
bound max{I[(ω, t) → ax ]} in our privacy notion:

max{I[(ω, t) → ax ]} = I[ω → ax ] + I[t → ax ]
−I[ω → ax ] · I[t → ax ] (7)

where ω and t individually leak privacy w.r.t. “ax is ON”.
In summary, the information leakage ω → ax to the

adversaries based on the observations of the consumption
rate ω is similar to the information leakage in the datasets
applied with k-anonymity [36]. Each possible combination of
the appliances in the candidate appliance set has an equal risk
to be linked to the overall consumption rate ω, and thus the
information leakage I[ω → ax ] can be obtained. Furthermore,
the information leakage from the consumption time in the

reading I[t → ax ] can increase the joint information leakage
of each appliance’s ON status via the union of two leakages.

Note that the appliances are not necessarily unique in A
(e.g., multiple lights) and an appliance may have more
than one consumption rate for different running modes
(e.g., Microwave). For the former case, we consider such
appliances as different appliances in A to calculate the can-
didate rate set and the candidate appliance set. For the latter
case, we consider such appliance as a single appliance (with
multiple possible consumption rates) in A to calculate the
candidate rate set and candidate appliance set as well as
measure the information leakage.

2) Leakage in a Reading Stream: First, given a reading
stream �R, the sequential patterns [35] of appliances in mul-
tiple readings can also help adversaries identify the usage of
appliances. A typical sequential pattern can be stated as “if
an appliance ax is ON at time t , it is likely to be ON at
time t + 1, . . . , t + N”. For instance, the information leakage
w.r.t. “dishwasher is ON” is 0.5 at 7pm, and also 0.5 at
7:05pm and 7:10pm, respectively. Since a dishwasher typically
runs for an hour (its sequential pattern) without interruption,
its information leakage may increase from 0.5 to 0.8 by
correlating the information leakage in multiple readings.

Second, another type of sequential patterns result from the
correlation between the usage of multiple appliances. For
instance, if a washer runs at time t , a dryer will frequently run
at a later time; if a microwave runs at time t , a dishwasher
will be very likely to run at a later time.

Third, many appliances not only have usage patterns within
a sequence of readings (as described above), but also fre-
quently run at the same time, e.g., TV and stereo system.

In sum, the above usage patterns (for one or multiple
appliances) could correlate information leakage from multiple
readings and appliances to pose additional privacy risks.

3) Summary of Information Leakages: As described above,
adversaries may easily obtain any of the following common
background knowledge:

• The reading frequency φ.
• A list of common appliances, their consumption rates and

temporal usage patterns (e.g., TV frequently runs at 8pm,
microwave rarely runs at 3am).

• Single appliances’ sequential usage patterns (e.g., dish-
washer continuously runs for one hour).

• The usage patterns of multiple appliances (in sequence),
e.g., washer runs first and then dryer runs.

• The usage patterns of multiple appliances (at the same
time), e.g., TV and stereo system.

Then, we formally illustrate three kinds of information
leakages based on the above background knowledge:

a) Information leakage (1): For any reading r in a
reading stream 〈 �Rin [1], . . . , �Rin [K ]〉, its consumption rate
ω and time t could leak the information of the appliances’
status (per Equation 6, the worst case of information leak-
age occurs as both ω and t individually leak information
with the least overlap). Then, adversaries can learn the
status of many appliances as ON at different times with
a high I[(ω, t) → ax ].
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b) Information leakage (2): Appliances may have
sequential usage patterns (e.g., dishwasher, and oven), which
occur in some consecutive readings in the stream. Without
loss of generality, assuming that appliance ax has a sequential
pattern to run in N consecutive readings, the information
leakage w.r.t. “ax is ON” in consecutive readings can be
obtained:

• I[(ω1, t + 1) → ax ]
• I[(ω2, t + 2) → ax]
• …
• I[(ωN , t + N) → ax ]
Then, the information leakage can be higher than any of the

above due to their correlation (correlating multiple leakage in
sequential readings).

c) Information leakage (3): Multiple appliances may
frequently run in sequence or simultaneously (e.g., washer and
dryer). Specifically, assuming that two appliances ax and ay

frequently run in sequence, if the following are relatively high:
• I[(ω1, t + 1) → ax ]
• I[(ωN , t + N) → ay]
Then, the information leakage w.r.t. each of ax and ay’s

status (at t + 1 and t + N , respectively) can be higher than
their original information leakage due to their correlation (cor-
relating two leakages in sequential readings). Similarly, if ax

and ay frequently run simultaneously and if the following are
relatively high:

• I[(ω, t) → ax ]
• I[(ω, t) → ay]
Therefore, the information leakage w.r.t. each of ax and ay’s

status at time t can be higher than their original information
leakage due to their correlation (correlating two leakages in
the same reading). �

C. Privacy Notions

To prevent the information leakage illustrated in
Section III-B.3, we first define a privacy notion for
quantifying and bounding such risks in any single reading as
below:

Definition 5 (ε-Uncertainty): Given an appliance set A,
we say a meter reading r satisfies ε-Uncertainty if ∀ax ∈ A,
I[(ω, t) → ax ] ≤ ε holds, where ω = r

φ and t represent the
reading r ’s consumption rate and consumption time respec-
tively, and 0 ≤ ε ≤ 1.

Thus, if any given reading r satisfies ε-Uncertainty (or say r
is ε-Uncertain), the information leakage of all the appliances’
ON status is no greater than ε. Note that ε-Uncertainty can
only bound the Information Leakage (1) in any single reading.
To bound the Information Leakage (2) and (3) in a reading
stream �R = 〈r1, . . . , rK 〉 (denoting the number of readings in
the stream as K ), we define the following privacy model:

Definition 6 ((ε, δm)-Uncertainty): A reading stream �R sat-
isfies (ε, δm)-Uncertainty if the following conditions hold:

1) All the readings in �R are ε-Uncertain;
2) The information leakage of any appliance’s ON status

in any m consecutive readings in �R is bounded by δ;
3) The information leakage of any combination of appli-

ances’ ON status in any m consecutive readings in �R is
bounded by δ.

Note that meeting the three conditions would mitigate
the risks of three categories of information leakages. Two
additional privacy parameters δ and m are defined: δ limits the
information leakage from any usage pattern (of single or mul-
tiple appliances) in any m consecutive readings in �R. Smaller
ε or δ and larger m provides stronger privacy protection.

D. Utility Measures

We define three different utility measures for our
approach. We first consider the billing accuracy. In real world,
besides the standard energy plan (constant tariff), two other
popular plans are widely used (1) time-of-use (TOU) plan,
and (2) tiered base (TB) plan [2], [20], [27]. In these two
plans, the electricity tariff may vary at different times (e.g.,
in TOU plan, peak vs. off-peak) or for different tiered con-
sumption amounts (e.g., in TB plan, < 1000 kWh/month vs.
≥ 1000 kWh/month). Thus, the billing error rate is defined as
below:

Definition 7 (Billing Error Rate): Given an input reading
stream �Rin , an equal-length output reading stream �Rout and a
billing function f (·) of an energy plan, if �Rout is utilized to
calculate the billed amount, the billing error rate is defined as

errb = | f ( �Rout ) − f ( �Rin)|
f ( �Rin)

(8)

Note that f (·) can be a constant tariff, or a function given
in the TOU or TB plan.

In addition, for some aggregation based smart grid appli-
cations [12] (e.g., regional statistics [7]), we define another
measure to quantify the utility of our output reading streams:

Definition 8 (Aggregation Error Rate): Given an input
reading stream �Rin with K readings and an equal-length
output reading stream �Rout , the aggregation error rate is
defined as

erra =
∣
∣
∣
∑K

i=1
�Rout [i ] − ∑K

i=1
�Rin [i ]

∣
∣
∣

∑K
i=1

�Rin [i ] (9)

where �Rin [i ] and �Rout [i ] are the i th reading in �Rin and
�Rout , respectively.
Furthermore, since the output reading stream �Rout might

be used to function some real-time services (e.g., load
monitoring [15]), the difference between two reading streams
�Rin and �Rout should also be measured. Then, we define the

reading error rate to quantify such difference:
Definition 9 (Reading Error Rate): Given an input reading

stream �Rin with K readings and an equal-length output reading
stream �Rout , the reading error rate is defined as

errr =
∑K

i=1 | �Rout [i ] − �Rin [i ]|
∑K

i=1
�Rin [i ] (10)

where �Rin [i ] and �Rout [i ] are the i th reading in �Rin and
�Rout , respectively.

IV. PRIVACY PRESERVING ALGORITHM

In this section, we first derive the conditions for deciding
whether a reading is safe to stream or not in Section IV-A,
and then present our algorithms in Section IV-B and IV-C.
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A. Safe Readings

Given any appliance set A, the candidate rate set can be
derived per Definition 2 as G and then we can derive:

Definition 10 (Candidate Reading Set R): A set of all the
possible readings R = {r : ∀ω ∈ G, r = ωφ}

Among all the possible readings in R, we define a safe
reading as below:

Definition 11 (Safe Reading): Given an (ε, δm)-Uncertain
reading stream �R, a reading r is a safe reading, if adding r
(with a specific time t) into �R also results in an
(ε, δm)-Uncertain reading stream.

Information leakage w.r.t. appliances’ ON/OFF status results
from the reading r ’s consumption rate ω, candidate rate set
c(ω) and also the consumption time t , thus r might be a
safe reading at time t but not a safe reading at time t ′ (e.g.,
some appliances in c(ω) may have high information leakage
at t ′ caused by the temporal usage patterns). As a result, safe
readings cannot be determined/precomputed before loading the
input reading stream with timestamps. Therefore, we develop
a privacy preserving algorithm to stream safe readings in
sequence. The basic idea is – while incrementally generating
every safe reading, the algorithm checks the new reading
and previous m − 1 readings whether (ε, δm )-Uncertainty is
still satisfied: if yes, then outputs it in the reading stream;
otherwise, iteratively checks the next reading in R.

1) Conditions for Safe Readings: We now explore the
conditions for generating a new safe reading in addition to
an existing reading stream. W.l.o.g., we denote m consecutive
readings as r1, . . . , rm at time t + 1, . . . , t + m respectively
and consider rm as the new reading, and the consumption rates
∀i ∈ [1, m], ωi = ri

φ . Denoting any arbitrary appliance as ax ,
the new reading rm should satisfy ε-Uncertainty, thus we have:

∀ax ∈ c(ωm), max{I[(ωm, t + m) → ax ]} ≤ ε (11)

Second, we denote the information leakage of ax ’s ON
status from multiple readings in the m consecutive readings
as I[ax ], which is bounded by δ. For simplicity of notations,
we denote ∀i ∈ [1, m], I[(ωi , t + i) → ax ] as I1, . . . ,Im .
Then, we consider the worst case that information leakages of
ax ’s ON status from the m consecutive readings have the least
overlap (which leads to the highest union of the information
leakages from multiple readings), discussed as below:

• Correlating the information leakages of ax ’s ON status
from multiple readings clearly increases the joint infor-
mation leakage (which is the union of multiple individual
leakages). As all the information leakages (e.g., Ii and
Ii+1) are fixed, the union of them achieves the maximum
value when the individual leakages (e.g., Ii and Ii+1) are
independent to have the least overlap.

Then, we need to bound the information leakage w.r.t. “ax is
ON in multiple readings”. Specifically, since ∀i ∈ [1, m],Ii ∈
[0, 1] (normalized), the information leakage of ax ’s OFF status
in all the m readings can be represented as

∏m
i=1(1 −Ii), and

the information leakage w.r.t. “ax is ON in exactly one out of
the m consecutive readings” is

∑m
i=1[Ii

∏m
j=1; j �=i(1 − I j )].

Thus, the maximum I[ax ] can be derived and bounded as:

max{I[ax]} = 1 −
m∏

i=1

(1 − Ii ) −
m∑

i=1

[Ii

m∏

j=1; j �=i

(1 − I j )]

= 1 −
m∏

i=1

[(1 − Ii ) + Ii

m∏

j=1; j �=i

(1 − I j )] ≤ δ

(12)

Third, similarly, letting ay be another appliance other than
ax , we denote the information leakage w.r.t. ax and ay’s ON
status from one or multiple readings out of the m consecutive
readings as I[ax , ay], which is also bounded by δ. Again,
we denote ∀i ∈ [1, m], I[(ωi , t + i) → ay] as I ′

1, . . . ,I ′
m .

Then, we also consider the worst case that information leak-
ages of ax or ay’s ON status from all the m consecutive
readings have the least overlap (which also leads to the highest
union of the information leakages of ax or ay’s ON status from
multiple readings), discussed as below:

• Correlating the information leakages of ax and ay’s
ON status from one or multiple readings clearly increases
the joint information leakage (which is the union of
multiple individual leakages); as all the information leak-
ages (e.g., Ii and I ′

i ) are fixed, the union of them achieves
the maximum value when the individual leakages (e.g.,
Ii and I ′

i ) are independent to have the least overlap.
Again, we need to bound the information leakage w.r.t.

“ax and ay are ON in one or multiple reading”. Specifically,
the information leakage w.r.t. “both ax and ay are OFF in all
the m readings” can be represented as

∏m
i=1(1 − Ii )(1 − I ′

i ),
the information leakage w.r.t. “ax is ON and ay is OFF in the
m consecutive readings” is

∑m
i=1[Ii

∏m
j=1(1 − I ′

j )], and the

information leakage w.r.t. “ay is ON and ax is OFF in the
m consecutive readings” is

∑m
i=1[I ′

i

∏m
j=1(1 − I j )]. Thus,

the maximum I[ax , ay] can be derived and bounded as:

max{I[ax , ay]} = 1 −
m∏

i=1

(1 − Ii )(1 − I ′
i )

−
m∑

i=1

[Ii

m∏

j=1

(1 − I ′
j )]

−
m∑

i=1

[I ′
i

m∏

j=1

(1 − I j )] ≤ δ (13)

Notice that the information leakage w.r.t. “any combination
of appliances including ax and ay (w.l.o.g. ax , ay, az, . . . ) can
be ON in m consecutive readings” is no greater than I[ax , ay]
(simply because leakage w.r.t. “ax and ay are ON” and leakage
w.r.t. “az ,…are ON” should concur to leak information of
ax , ay, az, . . . ’s ON status). Hence, such information leakage
is also bounded by δ if Equation 13 holds.

In summary, while examining the current reading rm

(safe or not) along with the previous m − 1 readings, if three
conditions hold (Equation 11, 12 and 13), then rm is safe since
the reading stream (with rm ) still satisfy (ε, δ)m -Uncertainty.
Such three conditions will be adopted by our stream algorithm
to check whether a reading is safe or not.
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B. Initializing the Smart Meter (Offline)

Before running the streaming algorithm, the smart meter
should be initialized to recursively traverse all the 2|A| sub-
sets of A and then identify the candidate rate set G, can-
didate reading set R as well as candidate appliance sets
∀ω ∈ G, c(ω). Notice that the initialization is a one-time
offline process.

Most real-life households typically have a small or medium
number of appliances (e.g., |A| ≤ 40). Thus, it is feasible
to find the exact candidate rate set G by traversing every
element in the power set 2A. In case that a large number
of appliances are attached to a smart meter of a community,
building or factory (e.g., |A| = 1000), the exponential number
of possible appliance combinations (in A’s power set 2A)
cannot be enumerated in polynomial time. To resolve this,
we define a reasonably large number p (e.g., 109) as the
maximum number of traversed elements in 2A to terminate
the recursive traversal in the smart meter initialization such
that the approximated G, R and ∀ω ∈ G, c(ω) are generated.
As will be demonstrated in Section VI, such an approximation
leads to satisfactory results in terms of generating candidate
rate/reading sets.

C. Privacy Preserving Streaming (Online)

Assuming that the smart meter originally collects K read-
ings in the input stream �Rin , our streaming algorithm privately
streams K output readings �Rout . Our algorithm incrementally
generates and outputs safe readings based on the input readings
in �Rin where billing and aggregation errors can be extremely
low while reading errors can also be minimized to some extent
in the output stream. The basic idea is – for each input reading,
our algorithm first looks up the closest safe reading in R
(which is a key building block of our streaming algorithm),
and outputs it in different fashions to achieve good utility of
the stream, shown as below.

Algorithm 1 Closest Safe Reading Lookup

Input : an input reading �Rin [i ]; current output readings
�Rout = 〈 �Rout [1], . . . , �Rout [i − 1]〉; candidate

reading set R; privacy parameters ε, δ, m
Output: an output safe reading �Rout [i ]

1 initialize �Rout [i ] = arg min ∀r∈R |r − �Rin [i ]| (closest)
2 while �Rout ∪ �Rout [i ] is not (ε, δm )-Uncertain do
3 R′ = R − �Rout [i ]
4 �Rout [i ] = arg min ∀r∈R′ |r − �Rin [i ]| (next closest)
5 check whether �Rout ∪ �Rout [i ] satisfies

(ε, δm )-Uncertainty with Equations 11, 12 and 13

6 Return the safe reading �Rout [i ]

1) Closest Safe Reading Lookup: Algorithm 1 presents
the details of closest safe reading lookup. While the smart
meter captures an input reading, it iteratively finds the closest
reading r in R and examine whether r is safe or not:
whether the output stream with r satisfies (ε, δm )-Uncertainty
or not.

2) Streaming Algorithm: In order to minimize the aggre-
gation and billing errors, while streaming every safe read-
ing (converted from the input reading), our algorithm rolls over
the reading remainder ( �Rout [i ]− �Rin [i ] can be positive or neg-
ative) to the either (1) the last reading, or (2) the next input
reading of the stream. We propose two roll over options as
below:

• Cyclic Reading Conversion (CRC): find the closest safe
reading for each input reading, aggregate all the input
readings’ remainders (either positive or negative) together
and roll over the aggregated remainder to the last reading.
“Cyclic” means every reading remainder is cyclically
reset to 0 (does not affect the next reading) and the aggre-
gated remainder will be subtracted in the last reading.

• Dynamic Reading Conversion (DRC): dynamically
update every input reading with the previous reading
remainder and then find the closest safe reading based
on the updated input reading.

With these two options of handling the reading remain-
ders (which result from the conversion from input read-
ings to safe readings), we detail our streaming algorithm
in Algorithm 2.

Algorithm 2 Privacy Preserving Reading Streaming

Input : an input reading stream �Rin ; candidate reading
set R; privacy parameters ε, δ, m

Output: output safe reading stream �Rout

1 initialize a reading remainder λ = 0
/* (1) if CRC (roll over remainders) */

2 foreach �Rin [i ] ∈ �Rin, i ∈ [1, K ] do
3 if i = K then

/* at the last reading */
4 �Rin [K ] = �Rin [K ] − λ

5 call Algorithm 1 to get �Rin [K ]’s closest safe
reading closest

6 Return closest as �Rin [K ]
7 else
8 call Algorithm 1 to get closest as �Rin [i ]’s closest

safe reading
9 λ+ = (closest − �Rin [i ])

10 Return closest as �Rout [i ]
/* (2) if DRC (roll over remainders) */

11 foreach �Rin [i ] ∈ �Rin, i ∈ [1, K ] do
12 �Rin [i ] = �Rin [i ] − λ

13 run Algorihtm 1 to get closest as �Rin [i ]’s closest safe
reading

14 λ = closest − �Rin [i ]
15 Return closest as �Rout [i ]

a) CRC option: Given the i th reading �Rin [i ] in the
stream, CRC first verifies whether it is the last reading. If yes,
CRC will sum up the aggregated reading remainder λ to the
current reading �Rin [K ] and return its closest safe reading.
Otherwise, the algorithm returns the original input reading
�Rin [i ]’s closest safe reading closest , and λ is updated with
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the difference closest − �Rin [i ]. In summary, Algorithm 2 with
the CRC option has the following characteristics:

• Aggregation Error: since the aggregated reading remain-
der λ is integrated into the last reading, the overall
aggregation error would be the difference between one
single reading ( �Rin[K ] − λ) and its closest safe reading.
It has high possibility of being close to 0, as shown in
experimental section.

• Billing Error: assuming the time frame for ∀i ∈
[1, K ], �Rin [i ] is the billing cycle, if the tariff func-
tion f (·) of electricity bill is a constant, the difference
between aggregating the readings in �Rin and �Rout results
from the last reading (since reading remainders have
been integrated in the aggregation). Thus, CRC option’s
billing error is identical to its aggregation error (close
to 0).

• Reading Error: since all K readings in the stream except
the last reading can achieve its local optimum towards
minimizing the reading error with its closest safe reading,
the reading error can be minimized to some extent.

• Privacy: �Rout satisfies (ε, δm )-Uncertainty.

b) DRC option: DRC dynamically updates each read-
ing by integrating the previous reading remainder λ, then
returns the updated reading’s closest safe reading, and finally
generates a new reading remainder for the next reading.
Also, Algorithm 2 with the DRC option has the following
characteristics:

• Aggregation Error: since every reading remainder is
integrated into the next reading, the aggregation error
is the last remainder which is well balanced by all the
readings into a very small number. Then, the aggregation
error is extremely close to 0.

• Billing Error: similar to the aggregation error, the billing
error (with constant tariff) is also extremely close
to 0.

• Reading Error: since each reading integrates the pre-
vious remainder, the reading error of DRC is relatively
higher than CRC. Nevertheless, after integrating the
previous remainder, each reading can also achieve its
local optimum towards minimizing the reading error by
converting the reading to the closest safe reading.

• Privacy: �Rout satisfies (ε, δm )-Uncertainty.

Furthermore, our privacy preserving algorithm outputs safe
readings which are associated with large number of possi-
ble combinations of appliances in real world (by ensuring
(ε, δm)-Uncertainty). Thus, our proposed approach could also
prevent the privacy risks against NILM algorithms (both
supervised [8], [9], [25] and unsupervised [22], [24]) for
two reasons. First, safe readings are converted from the true
readings, and the aggregated consumption have been changed
from the original readings. Second, the output safe readings
in our algorithm are associated with large number of possible
combinations of appliances in real world by satisfying the
privacy notion, such large number of appliance combinations
would increase the estimated consumption amount of more
appliances (compared to the true readings) and greatly reduce
the learning accuracy.

V. ANALYSIS

A. Privacy Analysis

We now analyze the privacy leakage in the output �Rout ,
assuming that the adversary can possess the some or all of the
background knowledge described in Section III-B.3.

Lemma 1: The output reading stream of Algorithm 2:
�Rout satisfies (ε, δm )-Uncertainty.
Proof. Since ∀i ∈ [1, K ], �Rout [i ] are generated in time

series sequence, and each newly streamed output reading
together with the most recent m − 1 readings in the stream
strictly satisfy the three groups of conditions (Equations 11, 12
and 13), it is straightforward to see that all the output readings
in the stream satisfies (ε, δm )-Uncertainty. �

B. Complexity Analysis

Our approach consists of two phases (1) the offline smart
meter initialization phase, and (2) the online streaming phase.
First, the offline phase recursively traverses the power set of A
(exponential) to identify the candidate reading set and possible
rates’ candidate appliance sets. For a large size A, the recursive
traversal is terminated with a sufficiently large number of
traversed elements in 2A (denoted as p). Second, the online
phase streams K readings: for each reading, it iteratively
looks up a closest safe reading from R (say, O(n) readings
are returned to identify a safe reading) and examines all the
appliances in every candidate reading’s candidate appliance
set (at most |A| appliances) to check whether the information
leakage meets (ε, δm )-Uncertainty or not for the most recent
m output readings. Thus, the computational complexity of the
online streaming phase is O(K |A|nm), which is polynomial.

C. Implementation and Scalability

Our streaming algorithm can be easily integrated into a
smart meter. Specifically, the appliance set A and privacy
parameters ε, δ and m can be loaded into the smart meter via
a web interface or a mobile application for generating G, R
and ∀c(ω) in the initialization. Privacy parameter ε is specified
to bound the information leakage in single readings while δ
and m are specified to bound the information leakage from
the correlations of energy usage in one or multiple readings.
The CRC and DRC can be implemented as different privacy-
aware running modes in the smart meter. Once a new reading
is captured by the smart meter, a safe reading is generated
immediately and transmitted to the utility company.

Specifically, the consumers can locally adjust their privacy
parameters ε, δ and m based on their levels of privacy demand
at any time, but they do not need to change the (CRC and
DRC based) privacy preserving streaming algorithm (which
is integrated in the smart meter). For better functioning
some emerging services (e.g., energy saving recommenda-
tion, and non-intrusive load monitoring [15]), the utility
company can keep a detailed inventory of each appliance,
which will not pose additional privacy concerns to our
streaming algorithm (since we assume that adversaries could
possess the appliance list as background knowledge in our
privacy model). Upon addition and/or removal of appliances



HONG et al.: PRIVACY PRESERVING SMART METER STREAMING AGAINST INFORMATION LEAKAGE OF APPLIANCE STATUS 2235

TABLE IV

CHARACTERISTICS OF THE DATASETS

(e.g., purchasing/replacing a new appliance, house owners
move out, renting the houses to tenants, and houses with
visitors who bring their own devices), the consumers can
locally reset the smart meter with an updated list of appliance
set A (running smart meter initialization once) and inform the
utility company if necessary. Notice that the consumers do
not necessarily change the streaming algorithm, and they can
switch from CRC to DRC (and vice-versa), as well as specify
a new group of privacy parameters ε, δ and m according to
their privacy demand.

Finally, after implementing our privacy preserving stream-
ing algorithm in the smart meters, the utility can offer such
privacy-aware smart metering services to the consumers. Since
both CRC and DRC based streaming algorithm would result
in small billing errors (less than ±4% in general), if the
consumers pay 4% more, this is the price traded for better
privacy protection; if they pay less, the utility can charge
a small amount of service fee to tackle such non-technical
losses. In the meanwhile, there are two alternative approaches
that can reduce the billing errors to as low as 0: (1) rolling
over the remainder of the last reading in the current billing
cycle to the next billing cycle (instead of discarding it), and
(2) we can let the consumers locally calculate the billed
amount without leaking private information. Such approaches
would need relatively more trust on the consumers, and
indeed match the fact that utilities in many countries (e.g.,
US and Canada) allow consumers to submit their readings by
themselves.

VI. EXPERIMENTS

A. Experimental Setup

1) Datasets: Richardson et al. [28] collected 22 dwellings’
power consumption over two years in East Midlands, UK.
Each of the 22 smart meters has reported 1,051,200 read-
ings (1 reading per minute). Furthermore, in UMass Trace
Repository (http://traces.cs.umass.edu/), Barker et al. [5] col-
lected 3 smart meters’ consumption data over three months
in 2012, respectively (1 reading per second).

We conducted the experiments on these two
datasets (denoted as “UK” and “UMass”, respectively),
and averaged the results of multiple smart meters in each
dataset. The characteristics of the two datasets are presented
in Table IV.

2) Parameters: ε is selected from 0.01 to 0.2 while δ is
selected from 0.01 to 0.1 in the experiments. In the evaluation
of heuristic smart meter initialization, we run additional tests
by letting the number of appliances be |A| = 20, 40, 100 and
each appliance’s consumption rate (watts) is selected from a
real-world list of appliances and consumption rates [1]. For
the tariffs of energy usage, we set the rates per the real

Fig. 1. Smart Meter Initialization.

world energy pricing plans offered by Pacific Gas and Electric
Company (PG&E) [2].

3) Platform: All the experiments were performed on a
DELL PC with Intel Core i7-4790 CPU 3.60GHz and
16G RAM running Microsoft Windows 8.1 Operating System.

B. Smart Meter Initialization (Offline)

Both UK and UMass Data include specific appliances and
their time series consumption information. We can obtain
the exact candidate rate G, candidate reading set R and
the candidate appliance sets ∀ω ∈ G, c(ω). However, if the
number of appliances m reaches 50, we may not be able
to obtain the exact result within a reasonable time due to
the exponential increase of the computational cost. In these
cases, we set a termination threshold p in the heuristic safe
candidate rate set generation, which runs only once for every
smart meter and requires a one-time offline computational cost.
Figure 1 presents the experimental results for smart meter
initialization. As p tends close to 106, the exact results of
G, R and ∀ω ∈ G, c(ω) for |A| = 20 can be derived, and the
results of |A| = 40 and |A| = 100 become relatively stable.
Therefore, if |A| increases, the approximated results G, R and
∀ω ∈ G, c(ω) can be sufficiently accurate.

C. Utility Evaluation

In the experiments, we have evaluated all three error
rates (billing, aggregation and reading) for both CRC and
DRC options with constant tariff.1 Specifically, we conduct
experiments using both UK and UMass datasets to test CRC
and DRC’s utility on varying ε, δ and m, respectively.

We select ε ∈ [0.1, 0.3], δ ∈ [0.05, 0.15] and m ∈
[10, 30]. While testing every privacy parameter, the other two
parameters are fixed to achieve the best privacy protection. For
ε, we fix δ = 0.05 and m = 30; for δ, we fix ε = 0.1 and
m = 30; for m, we fix ε = 0.1 and δ = 0.05. The experimental
results of aggregation/billing error rates are plotted in Figure 2
(varying ε in Figure 2(a), varying δ in Figure 2(b) and varying
m in Figure 2(c)). Furthermore, the corresponding experimen-
tal results of reading error rates are plotted in Figure 3. Then,
we have the following observations:

• Smaller ε and δ or greater m in the algorithm (both
CRC and DRC) could stream outputs with lower aggre-
gation/billing and reading errors.

1Aggregation error rate erra always equals the billing error rate errb in
case of constant tariff.
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Fig. 2. Aggregation/Billing Error Rate (Constant Tariff) – UK and UMass Datasets. (a) Aggregation/Billing Error Rate vs. ε. (b) Aggregation/Billing Error
Rate vs. δ. (c) Aggregation/Billing Error Rate vs. m.

Fig. 3. Reading Error Rate – UK and UMass Datasets. (a) Reading Error Rate vs. ε. (b) Reading Error Rate vs. δ. (c) Reading Error Rate vs. m.

Fig. 4. Computational Performance (UK Data). (a) Offline (one-time) Computational Cost. (b) Online Computational Cost. (c) Online Runtime Per Reading.

• Aggregation/billing error rates are low (UK data: < 1.2%
and UMass data: < 4.1%).

• The CRC option in the streaming generates higher aggre-
gation/billing errors but lower reading errors than the
DRC option (for both UK and UMass data).

• Privacy parameter ε impacts utility more significantly
than δ and m in our privacy model. Utility improves
more quickly as ε increases (all the errors decrease more
quickly) compared to increasing δ or reducing m.

In case of dynamic energy billing, e.g., TOU and TB
plans [2], [20], [27], we have discussed a possible solution
to ensure 0 billing error in Appendix VIII.

D. Efficiency Evaluation

1) Computational Performance: Figure 4(a) presents the
one-time offline runtime for the number of appliances |A| =
20, 25, 30, . . . , 1000. When |A| ≥ 60, we implement the
heuristic smart meter initialization by specifying a large ter-
mination threshold p = 109. As expected, the one-time offline
cost is tolerable for any smart meter (e.g., 120MHz [3]).
On the other hand, Figure 4(b) presents the total online runtime

for a varying number of readings in the input stream (from
50 days to 1 year, with 1440 readings per day). Both CRC
and DRC take less than 2 hours to convert and stream 1 year’s
readings in the UK data (525,600 readings in total). The CRC
option is slightly more efficient than DRC in the streaming
algorithm. Note that our streaming algorithm also has similar
performance on the UMass data.

2) Streaming Latency: Figure 4(c) demonstrates the runtime
consumed by streaming every single reading on average,
where ε ∈ [0.1, 0.3], δ ∈ [0.05, 0.15] and m ∈ [10, 30].
Such runtime is less than 0.016 second (� 1 second) for
both CRC and DRC. As a result, although smart meters
have relatively weaker computation power (e.g., 120MHz [3])
than an experimental PC (e.g., 3.60GHz), our privacy pre-
serving streaming algorithm can be implemented in the
smart meters for high resolution reading streams without any
latency.

E. Case Study

Besides conducting experiments on the overall metering
datasets, we also study the cases of specific houses.
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Fig. 5. Number of Privacy-leaking Appliances vs. Time in One Day (ε = 0.3, δ = 0.2, m = 5). (a) Terraced. (b) Semi-Detached. (c) Detached.

1) Case Study Setup: We select three sample houses with
different types (terraced, semi-detached and detached) from
the UK dataset [28] for the case study. In the three houses,
18, 26 and 33 appliances are installed, respectively. Specif-
ically, we simulate the information leakage and the privacy
preserving algorithm on the data collected from the three
houses on Jan 1, 2008. Note that we aggregate the high-
resolution readings into 15 minutes per reading, which is a
commonly used reading frequency. Also, some non-electric
appliances (e.g., Heating, Water Heating, and Gas Oven) do
not consume electricity and are not considered as leaking
privacy. In this case study, we specify ε = 0.3, δ = 0.2
and m = 5 (5 consecutive readings form one hour inter-
val for testing usage patterns in multiple readings). Then,
safe readings should make the information leakage of each
appliance not exceed 0.3 and the information leakage of any
appliance or combination of appliances in every 5 consecutive
readings not exceed 0.2.

Due to fluctuated power quality, the actual reading may not
equal the candidate reading derived from the labeled consump-
tion rates of the appliances (they are indeed close to each
other). For every reading, we find its closest candidate reading
to derive the information leakage. This matches the fact that
real-life adversaries also utilize the labeled consumption rates
in their mind to learn the appliances’ ON/OFF status.

To estimate the information leakage of appliances from their
temporal usage patterns I[t → ax ] ∈ [0, 1] for the day
Jan 1, 2008, we perform empirical study by surveying
10 students on campus. Every student estimates the likelihood
of each of the appliances is ON at all the timestamps on
Jan 1, 2008 (which is a generic estimate for all the households
without looking at the reading), where 24 time slots are given
and every 4 readings share the same result, e.g., the informa-
tion leakage w.r.t. “TV is ON” in [8pm, 9pm) is 0.3. Finally,
we average the results for each appliance and time in all the
surveys.

2) Information Leakage Analysis: From the reading stream
of each house, if the information leakage of any appli-
ance’s ON status at time t is greater than ε = 0.3, or the
information leakage of any appliance or any combination of
appliances’ ON status in any 5 consecutive readings (including
time t) is greater than δ = 0.2, then such appliance(s)
are considered as “privacy-leaking appliances at time t”.
Following this rule of information leakage analysis on the
reading stream of three sample houses, we can identify

the number of “privacy-leaking appliances” for each read-
ing time, and then plot such results for three houses in a
time series manner in Figure 5. It shows the number of
privacy-leaking appliances at different times in such three
houses. We can also observe which original reading is safe (no
privacy-leaking appliances at a specific time), and which
original reading is unsafe and how unsafe (based on the
number of privacy-leaking appliances at a specific time).
Specifically, we find out that some readings are originally
safe in every house w.r.t. the given parameters ε, δ and m
(e.g., 9:45am in the terraced house, 3:30am in the semi-
detached house, and 10:45pm in the detached house on
Jan 1, 2008). On the contrary, some readings in three houses
are highly unsafe, e.g., 7:45am in the terraced house, 5:45pm
in the semi-detached house, and 6:30pm in the detached house.
The privacy-leaking appliances in those readings are listed as
below:

• Terraced (7:45am): Bathroom Bulb, Kitchen Bulb, Bed-
room Bulb (1), Bedroom Bulb (2), Refrigerator, Toaster,
Kettle, Microwave.

• Semi-detached (5:45pm): Refrigerator, Kitchen Bulb and
Living Room Bulb (as a combination), Electric Oven,
Microwave, Kettle, Bathroom Bulb (1).

• Detached (6:30pm): Kitchen Bulb, Living Room Bulb,
Refrigerator, TV (CRT), Computer (1), Computer (2),
Electric Oven, Dishwasher.

Furthermore, we select an unsafe reading at 6:30pm in the
detached house (6 appliances have information leakage higher
than 0.3) to demonstrate the privacy risks of all the appliances.
In Figure 6, we plot the information leakage of the 30 electric
appliances, which are obtained by examining the candidate
appliance set of the reading/consumption rate (4.94kW). Then,
we have the following observations:

• Refrigerator is the most easily detected at any time (with
an information leakage higher than 0.9 due to its high
I[t → ax ]). This poses a challenge that an extremely
high I[t → ax ] of an appliance (such as refrigerator)
would lead to a high overall information leakage all
the time. Nevertheless, its ON status does not leak any
private information of the consumer since almost all the
households keep their such appliances (e.g., refrigerator)
running all the time.

• Although the bulbs in different rooms of each house
may have the same consumption rate, their informa-
tion leakage at the same time might be different (since
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Fig. 6. Information Leakage in the Detached House at 6:30pm (ε = 0.3, δ = 0.2, m = 5).

Fig. 7. Number of Privacy-leaking Appliances vs. Reading Frequency (ε = 0.3, δ = 0.2, m = 5). (a) Terraced. (b) Semi-Detached. (c) Detached.

such bulbs may have different I[t → ax ] at the same
time).

• In the detached house, at 6:30pm, TV is also a
privacy-leaking appliance with high information leakage
whereas electric shower is the hardest to identify with
the lowest information leakage. Similarly, in the semi-
detached house, at 5:45pm, kitchen bulb is the easiest to
detect (besides the refrigerator) whereas two computers
are the hardest to detect. In the terraced house, at 7:45am,
microwave is the easiest to detect (besides refrigerator)
whereas tumble dryer is the hardest to detect. Notice that
the ON status of some appliances can be leaked as a
combination (e.g., kitchen bulb and living room bulb in
the semi-detached house), and some appliances can be
detected from the correlations of energy usage in multiple
readings (e.g., dishwasher in the detached house).

Note that all the above observations match the ground truth
of power consumption in households. The information leakage
of each appliance’s ON status can either increase or decrease
over time due to the highly fluctuated consumption amount
and the usage patterns of such appliance at different times.

Finally, in order to learn how reading frequency affect
the privacy risks applied to different readings, we conducted
experiments to examine the number of privacy-leaking appli-
ances at 6 selected times in the same day (3 AM, 7AM,
11AM, 3PM, 7PM, 11PM) by varying the reading frequen-
cies (from 1 reading per minute to 1 reading per 15 minutes).
Then, we plot the number of privacy-leaking appliances at
those 6 different times with 4 different reading frequencies
in Figure 7 (the results obtained from each house is plotted
in a subfigure). Therefore, we can learn that readings would
leak more private information if they are reported more
frequently (e.g., adversaries can identify the largest number of

privacy-leaking appliances if the readings are reported with the
highest frequency 1 minute/reading). This matches the fact that
finer-grained readings would result in more privacy leakage.

3) CRC and DRC: To bound the privacy leakage in a read-
ing stream, our privacy preserving algorithm has two streaming
options CRC and DRC that satisfy (ε, δm)-Uncertainty. Due
to space limit, we only demonstrate the reading conversion
results in the sample detached house on Jan 1, 2008 in
Figure 8. We can find out the safe readings w.r.t. to privacy
parameters ε = 0.3, δ = 0.2 and m = 5 are close to the
original readings, then the reading errors can be minimized
in two different ways (note that the aggregation and billing
errors are negligible). Meanwhile, we have plotted the reading
conversion results for differential privacy [11] by adding the
generic Laplace noise to ensure 5-DP for the reading stream in
which the multiplicative differences between the probabilities
of generating any identical output from two neighboring inputs
are bounded by e5. The results show that differentially private
algorithm would lead to much higher errors and also greatly
fluctuate the output readings.

4) Phantom Load: We also examined how phantom
load (power consumption as some appliances are OFF, e.g.,
computers, microwave, electric oven and TV) affect the perfor-
mance of information leakage and the privacy preserving algo-
rithm in our case study. The phantom loads for such appliances
are referred to sites such as http://standby.lbl.gov/summary-
table.html. For instance, computer’s phantom load is ∼ 3.84%
its regular consumption rate, TV is ∼ 3.53%, Microwave is
∼ 0.21%, and Washing Machine is ∼ 0.48%. In the case
study, for the appliances with phantom load, we assign the
phantom load to their OFF status and derive the number of
privacy-leaking appliances (PL App #) and the reading errors
of the CRC and DRC. Table V shows that phantom loads
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Fig. 8. CRC and DRC (ε = 0.3, δ = 0.2, m = 5) vs. Original Reading and Differential Privacy (5-DP).

TABLE V

PERFORMANCE VS. PHANTOM LOAD

can slightly make the readings safer and lead to less errors in
reading conversions.

Finally, if some specific smart meters are deployed by con-
sumers with high-resolution readings (e.g., microgrids [19]),
e.g., the households established by UMass [5], information
leakage may still exist if explicitly disclosing such readings
to other parties. For instance, as the deployed smart meter
is integrated into the main grid, the high-resolution readings
might be analyzed in some applications (e.g., NILM [15], and
regional statistics [7]). Given any reading in such applica-
tions (aggregated or fine-grained), adversaries can still learn
the status of appliances with their background knowledge.

VII. LIMITATIONS AND CHALLENGES

A. Limitations

First, the reading errors of our CRC or DRC based stream-
ing algorithm can be relatively high if specifying a small ε,
δ and/or large m (for high privacy demand), compared to
the aggregation and billing errors (which can be close to 0).
Therefore, it may affect the accuracy of some real-time ser-
vices based on the smart meter streams (e.g., load monitoring).
Second, as discussed in Section VI-E.2, if some appliances are
very likely to be ON at most of the times (I[t → ax ] lies close
to 1) such as refrigerator and heating in winter, the information
leakage of such appliances cannot be effectively bounded
without sacrificing too much utility. Nevertheless, its ON status
leaks very limited privacy of the consumers since almost all
the households keep them running all the time. Finally, once
a new appliance is connected to the home, smart meter needs
to be re-initialized for the privacy model. Also, the reading
conversion may also violate some regulations for guaranteeing
the integrity of the bills in some countries/regions.

1) Challenges: First, smart meter initialization requires an
exponential complexity (offline) to generate the candidate rate

set and each possible consumption rate’s candidate appli-
ance set. For a small or medium number of appliances,
the algorithm can be executed once to obtain the exact result.
However, for a large number of appliances, we have to run a
heuristic algorithm (e.g., specifying a terminating point for the
algorithm) to obtain an approximated result. Second, the infor-
mation leakage of an appliance is derived based on both
the consumption rate and time. It is challenging to quantify
the information leakage from the temporal usage patterns of
different appliances I[t → ax ]. In the case study on Jan 1,
2008 (Section VI-E), we survey energy consumers to obtain
such patterns (the likelihood that most energy consumers use
each appliance at different times). Alternatively, we can use
the probability distribution function in [10] to estimate such
patterns and the corresponding information leakage.

VIII. CONCLUSION AND FUTURE WORK

Smart meter reading streams have posed severe privacy
threats to electricity consumers on the power grid. Beyond
the smart meter privacy issues tackled in literature, in this
paper, we have quantitatively measured and mitigated the
information leakage in such streaming data based on a wide
variety of background knowledge, including appliances’ con-
sumption rates and temporal patterns of usage, other correla-
tions/patterns of running the same or different appliances at
different times. We have defined a novel privacy model for
time series reading stream and developed a privacy preserving
streaming algorithm that efficiently outputs safe readings with
excellent utility. We have conducted experiments on real
datasets to validate the performance of our approach.

We can extend our work in several directions. First, for
an exponential number of candidate consumption rates and
the corresponding appliance subsets in A’s power set, we can
try to develop other heuristic or approximation algorithms to
generate the safe candidate rate set instead of simply setting
the termination threshold for recursively traversing A’s power
set, e.g., designing rules to prune the search space. Second, for
some real-time applications (e.g., load monitoring [15]) which
have high demand on reducing the reading errors, we can
explore other privacy preserving streaming algorithms for
smart meters to further minimize such errors. Third, inspired
from many state-of-the-art NILM solutions which start to use
the transient of the power consumption signal or the transition
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between power consumption states (e.g., HMM [22], [24])
to estimate the specific-appliance’s consumption, we plan to
investigate the background knowledge of consumption tran-
sient and the corresponding privacy leakage, and define a
rigorous privacy notion to quantify and bound such risks.
Moreover, information leakage may also occur in other time
series data, such as stock market data, and system/server logs.
We plan to explore efficient privacy preserving solutions to
tackle all of these problems in our future work.

APPENDIX A
PRIVACY PRESERVING STREAMING FOR

DYNAMIC ENERGY BILLING

Besides the constant tariff in a standard energy billing
plan, two different dynamic pricing policies (TOU and TB)
are widely adopted by utility companies [2], [20], [27].
To minimize the billing errors under such plans, the smart
meter (e.g., household) can locally compute the bill using the
input readings �Rin (but without disclosing �Rin ). At this time,
billing can be separated from the CRC or DRC based privacy
preserving streaming. Then, output reading stream �Rout can
be transmitted to the utility company in sequence while the
smart meter can still privately use �Rin and TOU or TB plan
to calculate the bill (disclosing the bill would not leak any
information in the vector �Rin [17]). In this case, we assume
that the smart meter (e.g., a household) is a trusted entity to
report the true bill (dynamic pricing) to the utility company.
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